scispace - formally typeset
Search or ask a question
Author

Zheng Liu

Bio: Zheng Liu is an academic researcher from University of British Columbia. The author has contributed to research in topics: Image fusion & Computer science. The author has an hindex of 34, co-authored 271 publications receiving 5456 citations. Previous affiliations of Zheng Liu include Air Force Research Laboratory & Beijing Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper conducts a comparative study on 12 selected image fusion metrics over six multiresolution image fusion algorithms for two different fusion schemes and input images with distortion and relates the results to an image quality measurement.
Abstract: Comparison of image processing techniques is critically important in deciding which algorithm, method, or metric to use for enhanced image assessment. Image fusion is a popular choice for various image enhancement applications such as overlay of two image products, refinement of image resolutions for alignment, and image combination for feature extraction and target recognition. Since image fusion is used in many geospatial and night vision applications, it is important to understand these techniques and provide a comparative study of the methods. In this paper, we conduct a comparative study on 12 selected image fusion metrics over six multiresolution image fusion algorithms for two different fusion schemes and input images with distortion. The analysis can be applied to different image combination algorithms, image processing methods, and over a different choice of metrics that are of use to an image processing expert. The paper relates the results to an image quality measurement based on power spectrum and correlation analysis and serves as a summary of many contemporary techniques for objective assessment of image fusion algorithms.

563 citations

Proceedings ArticleDOI
23 Mar 2019
TL;DR: Zhang et al. as mentioned in this paper proposed an image super-resolution feedback network (SRFBN) to refine low-level representations with high-level information, which uses hidden states in a recurrent neural network (RNN) with constraints to achieve such feedback manner.
Abstract: Recent advances in image super-resolution (SR) explored the power of deep learning to achieve a better reconstruction performance. However, the feedback mechanism, which commonly exists in human visual system, has not been fully exploited in existing deep learning based image SR methods. In this paper, we propose an image super-resolution feedback network (SRFBN) to refine low-level representations with high-level information. Specifically, we use hidden states in a recurrent neural network (RNN) with constraints to achieve such feedback manner. A feedback block is designed to handle the feedback connections and to generate powerful high-level representations. The proposed SRFBN comes with a strong early reconstruction ability and can create the final high-resolution image step by step. In addition, we introduce a curriculum learning strategy to make the network well suitable for more complicated tasks, where the low-resolution images are corrupted by multiple types of degradation. Extensive experimental results demonstrate the superiority of the proposed SRFBN in comparison with the state-of-the-art methods. Code is avaliable at https://github.com/Paper99/SRFBN_CVPR19.

418 citations

Posted Content
TL;DR: Zhang et al. as discussed by the authors proposed an image super-resolution feedback network (SRFBN) to refine low-level representations with high-level information, which uses hidden states in an RNN with constraints to achieve such feedback manner.
Abstract: Recent advances in image super-resolution (SR) explored the power of deep learning to achieve a better reconstruction performance. However, the feedback mechanism, which commonly exists in human visual system, has not been fully exploited in existing deep learning based image SR methods. In this paper, we propose an image super-resolution feedback network (SRFBN) to refine low-level representations with high-level information. Specifically, we use hidden states in an RNN with constraints to achieve such feedback manner. A feedback block is designed to handle the feedback connections and to generate powerful high-level representations. The proposed SRFBN comes with a strong early reconstruction ability and can create the final high-resolution image step by step. In addition, we introduce a curriculum learning strategy to make the network well suitable for more complicated tasks, where the low-resolution images are corrupted by multiple types of degradation. Extensive experimental results demonstrate the superiority of the proposed SRFBN in comparison with the state-of-the-art methods. Code is avaliable at this https URL.

386 citations

Journal ArticleDOI
TL;DR: A novel fusion framework is proposed for multimodal medical images based on non-subsampled contourlet transform (NSCT) to enable more accurate analysis of multimodality images.
Abstract: Multimodal medical image fusion, as a powerful tool for the clinical applications, has developed with the advent of various imaging modalities in medical imaging. The main motivation is to capture most relevant information from sources into a single output, which plays an important role in medical diagnosis. In this paper, a novel fusion framework is proposed for multimodal medical images based on non-subsampled contourlet transform (NSCT). The source medical images are first transformed by NSCT followed by combining low- and high-frequency components. Two different fusion rules based on phase congruency and directive contrast are proposed and used to fuse low- and high-frequency coefficients. Finally, the fused image is constructed by the inverse NSCT with all composite coefficients. Experimental results and comparative study show that the proposed fusion framework provides an effective way to enable more accurate analysis of multimodality images. Further, the applicability of the proposed framework is carried out by the three clinical examples of persons affected with Alzheimer, subacute stroke and recurrent tumor.

381 citations

Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art of inspection techniques and technologies towards condition assessment of water distribution and transmission mains is reviewed, including smart pipe, augmented reality, and intelligent robots.
Abstract: This paper reviews the state-of-the-art of inspection techniques and technologies towards condition assessment of water distribution and transmission mains. Pipe condition assessment is the determination of its current condition, including structural health, impact on water quality, and hydraulic capacity. The collection and analysis of relevant data and information is the first and a paramount step to detect and monitor critical indicators to prevent or mitigate catastrophic failures. The technologies include conventional non-destructive inspection and advanced sensor techniques for condition monitoring. This paper focuses on the inspection techniques and technologies for structural deterioration of water pipes. Technologies like smart pipe, augmented reality, and intelligent robots are also briefly discussed and summarized.

340 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: A novel feature similarity (FSIM) index for full reference IQA is proposed based on the fact that human visual system (HVS) understands an image mainly according to its low-level features.
Abstract: Image quality assessment (IQA) aims to use computational models to measure the image quality consistently with subjective evaluations. The well-known structural similarity index brings IQA from pixel- to structure-based stage. In this paper, a novel feature similarity (FSIM) index for full reference IQA is proposed based on the fact that human visual system (HVS) understands an image mainly according to its low-level features. Specifically, the phase congruency (PC), which is a dimensionless measure of the significance of a local structure, is used as the primary feature in FSIM. Considering that PC is contrast invariant while the contrast information does affect HVS' perception of image quality, the image gradient magnitude (GM) is employed as the secondary feature in FSIM. PC and GM play complementary roles in characterizing the image local quality. After obtaining the local quality map, we use PC again as a weighting function to derive a single quality score. Extensive experiments performed on six benchmark IQA databases demonstrate that FSIM can achieve much higher consistency with the subjective evaluations than state-of-the-art IQA metrics.

4,028 citations