scispace - formally typeset
Search or ask a question
Author

Zhengrou Zou

Bio: Zhengrou Zou is an academic researcher from Central South University. The author has contributed to research in topics: Autoencoder & Support vector machine. The author has an hindex of 1, co-authored 1 publications receiving 269 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This letter proposes to adaptively learn a suitable feature representation from unlabeled data by learning a feature mapping function based on stacked sparse autoencoder that embeds the learned spectral-spatial feature into a linear support vector machine for classification.
Abstract: In this letter, different from traditional methods using original spectral features or handcraft spectral–spatial features, we propose to adaptively learn a suitable feature representation from unlabeled data. This is achieved by learning a feature mapping function based on stacked sparse autoencoder. Considering that hyperspectral imagery (HSI) is intrinsically defined in both the spectral and spatial domains, we further establish two variants of feature learning procedures for sparse spectral feature learning and multiscale spatial feature learning. Finally, we embed the learned spectral–spatial feature into a linear support vector machine for classification. Experiments on two hyperspectral images indicate the following: 1) the learned spectral–spatial feature representation is more discriminative for HSI classification compared to previously hand-engineered spectral–spatial features, especially when the training data are limited and 2) the learned features appear not to be specific to a particular image but general in that they are applicable to multiple related images (e.g., images acquired by the same sensor but varying with location or time).

356 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The challenges of using deep learning for remote-sensing data analysis are analyzed, recent advances are reviewed, and resources are provided that hope will make deep learning in remote sensing seem ridiculously simple.
Abstract: Central to the looming paradigm shift toward data-intensive science, machine-learning techniques are becoming increasingly important. In particular, deep learning has proven to be both a major breakthrough and an extremely powerful tool in many fields. Shall we embrace deep learning as the key to everything? Or should we resist a black-box solution? These are controversial issues within the remote-sensing community. In this article, we analyze the challenges of using deep learning for remote-sensing data analysis, review recent advances, and provide resources we hope will make deep learning in remote sensing seem ridiculously simple. More importantly, we encourage remote-sensing scientists to bring their expertise into deep learning and use it as an implicit general model to tackle unprecedented, large-scale, influential challenges, such as climate change and urbanization.

2,095 citations

Journal ArticleDOI
TL;DR: This paper proposes a 3-D CNN-based FE model with combined regularization to extract effective spectral-spatial features of hyperspectral imagery and reveals that the proposed models with sparse constraints provide competitive results to state-of-the-art methods.
Abstract: Due to the advantages of deep learning, in this paper, a regularized deep feature extraction (FE) method is presented for hyperspectral image (HSI) classification using a convolutional neural network (CNN). The proposed approach employs several convolutional and pooling layers to extract deep features from HSIs, which are nonlinear, discriminant, and invariant. These features are useful for image classification and target detection. Furthermore, in order to address the common issue of imbalance between high dimensionality and limited availability of training samples for the classification of HSI, a few strategies such as L2 regularization and dropout are investigated to avoid overfitting in class data modeling. More importantly, we propose a 3-D CNN-based FE model with combined regularization to extract effective spectral-spatial features of hyperspectral imagery. Finally, in order to further improve the performance, a virtual sample enhanced method is proposed. The proposed approaches are carried out on three widely used hyperspectral data sets: Indian Pines, University of Pavia, and Kennedy Space Center. The obtained results reveal that the proposed models with sparse constraints provide competitive results to state-of-the-art methods. In addition, the proposed deep FE opens a new window for further research.

2,059 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a systematic review of deep learning-based hyperspectral image classification literatures and compare several strategies for this topic, which can provide some guidelines for future studies on this topic.
Abstract: Hyperspectral image (HSI) classification has become a hot topic in the field of remote sensing. In general, the complex characteristics of hyperspectral data make the accurate classification of such data challenging for traditional machine learning methods. In addition, hyperspectral imaging often deals with an inherently nonlinear relation between the captured spectral information and the corresponding materials. In recent years, deep learning has been recognized as a powerful feature-extraction tool to effectively address nonlinear problems and widely used in a number of image processing tasks. Motivated by those successful applications, deep learning has also been introduced to classify HSIs and demonstrated good performance. This survey paper presents a systematic review of deep learning-based HSI classification literatures and compares several strategies for this topic. Specifically, we first summarize the main challenges of HSI classification which cannot be effectively overcome by traditional machine learning methods, and also introduce the advantages of deep learning to handle these problems. Then, we build a framework which divides the corresponding works into spectral-feature networks, spatial-feature networks, and spectral-spatial-feature networks to systematically review the recent achievements in deep learning-based HSI classification. In addition, considering the fact that available training samples in the remote sensing field are usually very limited and training deep networks require a large number of samples, we include some strategies to improve classification performance, which can provide some guidelines for future studies on this topic. Finally, several representative deep learning-based classification methods are conducted on real HSIs in our experiments.

761 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with.
Abstract: Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.

629 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a sequence-based recurrent neural network (RNN) for hyperspectral image classification, which makes use of a newly proposed activation function, parametric rectified tanh (PRetanh), instead of the popular tanh or rectified linear unit.
Abstract: In recent years, vector-based machine learning algorithms, such as random forests, support vector machines, and 1-D convolutional neural networks, have shown promising results in hyperspectral image classification. Such methodologies, nevertheless, can lead to information loss in representing hyperspectral pixels, which intrinsically have a sequence-based data structure. A recurrent neural network (RNN), an important branch of the deep learning family, is mainly designed to handle sequential data. Can sequence-based RNN be an effective method of hyperspectral image classification? In this paper, we propose a novel RNN model that can effectively analyze hyperspectral pixels as sequential data and then determine information categories via network reasoning. As far as we know, this is the first time that an RNN framework has been proposed for hyperspectral image classification. Specifically, our RNN makes use of a newly proposed activation function, parametric rectified tanh (PRetanh), for hyperspectral sequential data analysis instead of the popular tanh or rectified linear unit. The proposed activation function makes it possible to use fairly high learning rates without the risk of divergence during the training procedure. Moreover, a modified gated recurrent unit, which uses PRetanh for hidden representation, is adopted to construct the recurrent layer in our network to efficiently process hyperspectral data and reduce the total number of parameters. Experimental results on three airborne hyperspectral images suggest competitive performance in the proposed mode. In addition, the proposed network architecture opens a new window for future research, showcasing the huge potential of deep recurrent networks for hyperspectral data analysis.

560 citations