scispace - formally typeset
Search or ask a question
Author

Zhengwu Jin

Bio: Zhengwu Jin is an academic researcher from Tokyo Institute of Technology. The author has contributed to research in topics: Magnetic semiconductor & Thin film. The author has an hindex of 12, co-authored 18 publications receiving 2741 citations. Previous affiliations of Zhengwu Jin include National Institute for Materials Science.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the lattice constants of both a and c axes of wurtzite Zn1−xMnxO films (x < 0.35) increase and the band gap expands although considerable in-gap absorption develops.
Abstract: Epitaxial thin films of an oxide-diluted magnetic semiconductor, Mn-doped ZnO, were fabricated by pulsed-laser deposition technique. Solubility of Mn into ZnO exceeds thermal equilibrium limit as a result of nonequilibrium film growth process. As Mn content is increased, the lattice constants of both a and c axes of wurtzite Zn1−xMnxO films (x<0.35) increase and the band gap expands although considerable in-gap absorption develops. Itinerant electrons over 1019 cm−3 can be doped into the Zn1−xMnxO films by Al doping, in contrast to low carrier density in the other II–VI diluted magnetic semiconductors. The temperature dependence of the resistivity is almost metallic and considerable magnetoresistance is observed at low temperatures.

657 citations

Journal ArticleDOI
TL;DR: In this paper, the magnetic properties of an oxide-diluted magnetic semiconductor (DMS), Zn0.64Mn 0.36O, were investigated and the temperature dependence of the magnetization showed a spin-glass behavior with the large magnitude of the Curie-Weiss temperature.
Abstract: We report on the magnetic properties of an oxide-diluted magnetic semiconductor (DMS), Zn0.64Mn0.36O. The temperature dependence of the magnetization shows a spin-glass behavior with the large magnitude of the Curie–Weiss temperature, corresponding to a stronger antiferromagnetic exchange coupling than other II–VI DMSs. The small effective Mn moment (x∼0.02) under high field also represents a strong antiferromagnetic exchange coupling in this compound.

654 citations

Journal ArticleDOI
TL;DR: Combinatorial laser molecular-beam epitaxy method was employed to fabricate epitaxial ZnO thin films doped with all the 3d transition metal (TM) ions in a high throughput fashion as discussed by the authors.
Abstract: Combinatorial laser molecular-beam epitaxy method was employed to fabricate epitaxial ZnO thin films doped with all the 3d transition metal (TM) ions in a high throughput fashion The solubility behavior of TM ions was discussed from the viewpoints of the ionic radius and valence state The magneto-optical responses coincident with absorption spectra were observed for Mn- and Co-doped samples Cathodoluminescence spectra were studied for Cr-, Mn-, Fe-, and Co-doped samples, among which Cr-doped ZnO showed two sharp peaks at 297 eV and 371 eV, respectively, at the expense of the exciton emission peak of pure ZnO at 325 eV Different magnetoresistance behavior was observed for the samples codoped with n-type carriers Ferromagnetism was not observed for Cr- to Cu-doped samples down to 3 K

587 citations

Journal ArticleDOI
TL;DR: The magnetic circular dichroism (MCD) spectra of Zn1−xTMxO (TM=Sc, Ti, V, Cr, Mn, Co, Ni, and Cu) films were measured to clarify their magneto-optical properties as mentioned in this paper.
Abstract: Magnetic circular dichroism (MCD) spectra of Zn1−xTMxO (TM=Sc, Ti, V, Cr, Mn, Co, Ni, and Cu) films were measured to clarify their magneto-optical properties. Noticeable magneto-optical effect was not observed for Zn1−xScxO, Zn1−xTixO, Zn1−xVxO, and Zn1−xCrxO. On the contrary, Zn1−xMnxO, Zn1−xCoxO, Zn1−xNixO, and Zn1−xCuxO showed pronounced negative MCD peaks near 3.4 eV which correspond to the band gap of the host ZnO semiconductor. These results show that ZnO alloyed with Mn, Co, Ni, and Cu is a diluted magnetic semiconductor with strong exchange interaction between sp-band carriers and localized d electrons.

276 citations

Journal ArticleDOI
TL;DR: In this paper, a new combinatorial synthesis system integrating a shadow mask into a laser MBE chamber was developed for fabricating a number of crystalline films with different compositions under programmed temperature and pressure conditions.
Abstract: We have developed a new combinatorial synthesis system integrating a combinatorial shadow mask into a laser MBE (molecular beam epitaxy) chamber. This combinatorial Laser MBE system can be used for fabricating a number of crystalline films with different compositions on a substrate under programmed temperature and pressure conditions. The method was applied to alloying and band gap engineering of ZnO by positional substitution of Mg into ZnO thin films. The superiority of the combinatorial methodology to conventional one-by-one synthesis is evident from the high linearity of the c-axis length and band gap dependence on Mg content.

180 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
02 Feb 2001-Science
TL;DR: The observation of transparent ferromagnetism in cobalt-doped anatase thin films with the concentration of cobalt between 0 and 8% is reported, indicating the existence of ferromagnetic long-range ordering.
Abstract: Dilute magnetic semiconductors and wide gap oxide semiconductors are appealing materials for magnetooptical devices. From a combinatorial screening approach looking at the solid solubility of transition metals in titanium dioxides and of their magnetic properties, we report on the observation of transparent ferromagnetism in cobalt-doped anatase thin films with the concentration of cobalt between 0 and 8%. Magnetic microscopy images reveal a magnetic domain structure in the films, indicating the existence of ferromagnetic long-range ordering. The materials remain ferromagnetic above room temperature with a magnetic moment of 0.32 Bohr magnetons per cobalt atom. The film is conductive and exhibits a positive magnetoresistance of 60% at 2 kelvin.

2,302 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a new technique to fabricate p-type ZnO reproducibly, and showed high-quality undoped films with electron mobility exceeding that in the bulk.
Abstract: Since the successful demonstration of a blue light-emitting diode (LED)1, potential materials for making short-wavelength LEDs and diode lasers have been attracting increasing interest as the demands for display, illumination and information storage grow2,3,4. Zinc oxide has substantial advantages including large exciton binding energy, as demonstrated by efficient excitonic lasing on optical excitation5,6. Several groups have postulated the use of p-type ZnO doped with nitrogen, arsenic or phosphorus7,8,9,10, and even p–n junctions11,12,13. However, the choice of dopant and growth technique remains controversial and the reliability of p-type ZnO is still under debate14. If ZnO is ever to produce long-lasting and robust devices, the quality of epitaxial layers has to be improved as has been the protocol in other compound semiconductors15. Here we report high-quality undoped films with electron mobility exceeding that in the bulk. We have used a new technique to fabricate p-type ZnO reproducibly. Violet electroluminescence from homostructural p–i–n junctions is demonstrated at room-temperature.

1,964 citations

Journal ArticleDOI
TL;DR: In this article, a 3d transition metal-doped ZnO films (n-type Zn1−xMxO) were formed on sapphire substrates using a pulsed-laser deposition technique, and their magnetic and electric properties were examined.
Abstract: 3d-transition-metal-doped ZnO films (n-type Zn1−xMxO (x=005–025): M=Co, Mn, Cr, Ni) are formed on sapphire substrates using a pulsed-laser deposition technique, and their magnetic and electric properties are examined The Co-doped ZnO films showed the maximum solubility limit Some of the Co-doped ZnO films exhibit ferromagnetic behaviors with the Curie temperature higher than room temperature The magnetic properties of Co-doped ZnO films depend on the concentration of Co ions and carriers

1,852 citations

Journal ArticleDOI
TL;DR: The first observations of ferromagnetism above room temperature for dilute (<4 at%) Mn-doped ZnO semiconductors are reported, promising new spintronic devices as well as magneto-optic components.
Abstract: The search for ferromagnetism above room temperature in dilute magnetic semiconductors has been intense in recent years. We report the first observations of ferromagnetism above room temperature for dilute ( 700 °C) methods were used, samples were found to exhibit clustering and were not ferromagnetic at room temperature. This capability to fabricate ferromagnetic Mn-doped ZnO semiconductors promises new spintronic devices as well as magneto-optic components.

1,652 citations