scispace - formally typeset
Search or ask a question
Author

Zhenhui Kang

Bio: Zhenhui Kang is an academic researcher from Soochow University (Suzhou). The author has contributed to research in topics: Catalysis & Photocatalysis. The author has an hindex of 71, co-authored 433 publications receiving 25875 citations. Previous affiliations of Zhenhui Kang include Northeast Normal University & Macau University of Science and Technology.


Papers
More filters
Journal ArticleDOI
27 Feb 2015-Science
TL;DR: The design and fabrication of a metal-free carbon nanodot–carbon nitride (C3N4) nanocomposite is reported and its impressive performance for photocatalytic solar water splitting is demonstrated.
Abstract: The use of solar energy to produce molecular hydrogen and oxygen (H2 and O2) from overall water splitting is a promising means of renewable energy storage. In the past 40 years, various inorganic and organic systems have been developed as photocatalysts for water splitting driven by visible light. These photocatalysts, however, still suffer from low quantum efficiency and/or poor stability. We report the design and fabrication of a metal-free carbon nanodot-carbon nitride (C3N4) nanocomposite and demonstrate its impressive performance for photocatalytic solar water splitting. We measured quantum efficiencies of 16% for wavelength λ = 420 ± 20 nanometers, 6.29% for λ = 580 ± 15 nanometers, and 4.42% for λ = 600 ± 10 nanometers, and determined an overall solar energy conversion efficiency of 2.0%. The catalyst comprises low-cost, Earth-abundant, environmentally friendly materials and shows excellent stability.

3,553 citations

Journal ArticleDOI
TL;DR: The facile one-step alkali-assisted electrochemical fabrication of CQDs with sizes of 1.2– 3.8 nm which possess size-dependent photoluminescence (PL) and excellent upconversion luminescence properties are reported and the design of photocatalysts is demonstrated to harness the use of the full spectrum of sunlight.
Abstract: Carbon nanostructures are attracting intense interest because of their many unique and novel properties. The strong and tunable luminescence of carbon materials further enhances their versatile properties; in particular, the quantum effect in carbon is extremely important both fundamentally and technologically. Recently, photoluminescent carbonbased nanoparticles have received much attention. They are usually prepared by laser ablation of graphite, electrochemical oxidation of graphite, electrochemical soaking of carbon nanotubes, thermal oxidation of suitable molecular precursors, vapor deposition of soot, proton-beam irradiation of nanodiamonds, microwave synthesis, and bottom-up methods. Although small (ca. 2 nm) graphite nanoparticles show strong blue photoluminescence (PL), definitive experimental evidence for luminescence of carbon structure arising from quantum-confinement effects and size-dependent optical properties of carbon quantum dots (CQDs) remains scarce. Herein, we report the facile one-step alkali-assisted electrochemical fabrication of CQDs with sizes of 1.2– 3.8 nm which possess size-dependent photoluminescence (PL) and excellent upconversion luminescence properties. Significantly, we demonstrate the design of photocatalysts (TiO2/CQDs and SiO2/CQDs complex system) to harness the use of the full spectrum of sunlight (based on the upconversion luminescence properties of CQDs). It can be imagined that judicious cutting of a graphite honeycomb layer into ultrasmall particles can lead to tiny fragments of graphite, yielding CQDs, which may offer a straightforward and facile strategy to prepare high-quality CQDs. Using graphite rods as both anode and cathode, and NaOH/EtOH as electrolyte, we synthesized CQDs with a current intensity of 10–200 mAcm . As a reference, a series of control experiments using acids (e.g. H2SO4/EtOH) as electrolyte yielded no formation of CQDs. This result indicates that alkaline environment is the key factor, and OH group is essential for the formation of CQDs by the electrochemical oxidation process. Figure 1a shows a trans-

2,266 citations

Journal ArticleDOI
TL;DR: In this article, a review of the photo and electron properties of carbon nanodots is presented to provide further insight into their controversial emission origin and to stimulate further research into their potential applications, especially in photocatalysis, energy conversion, optoelectronics, and sensing.
Abstract: Carbon nanodots (C-dots) have generated enormous excitement because of their superiority in water solubility, chemical inertness, low toxicity, ease of functionalization and resistance to photobleaching. In this review, by introducing the synthesis and photo- and electron-properties of C-dots, we hope to provide further insight into their controversial emission origin (particularly the upconverted photoluminescence) and to stimulate further research into their potential applications, especially in photocatalysis, energy conversion, optoelectronics, and sensing.

2,262 citations

Journal ArticleDOI
01 Feb 2011-Carbon
TL;DR: In this paper, the authors synthesize monodispersed water-soluble fluorescent carbon nanoparticles (CNPs) from glucose by a one-step alkali or acid assisted ultrasonic treatment.

764 citations

Journal ArticleDOI
TL;DR: In this article, the facile fabrication of Ag3PO4, CQDs/Ag3PO 4, Ag/Ag 3PO4 and corresponding complex photocatalysts was reported.
Abstract: In this study, we report the facile fabrication of Ag3PO4, CQDs/Ag3PO4, Ag/Ag3PO4 and CQDs/Ag/Ag3PO4 photocatalysts (CQDs, carbon quantum dots). For CQDs/Ag3PO4 and CQDs/Ag/Ag3PO4, because of the insoluble, photoinduced electron transfer, upconversion luminescence and electron reservoir properties of CQDs, the complex photocatalysts exhibit enhanced photocatalytic activity and structural stability over the photodecomposition of organic compounds (methyl orange) under the irradiation of visible light. Furthermore, the synergistic effect of CQDs and the intense surface plasmon resonance of Ag lead to the highest photocatalytic activity of CQDs/Ag/Ag3PO4 among Ag3PO4 and the corresponding complex photocatalysts. Our results provide an invaluable methodology for designing high-performance photocatalysts based on CQDs and related functional materials, which is promising for catalytic and new energy applications.

654 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Practical Interests of Magnetic NuclearRelaxation for the Characterization of Superparamagnetic Colloid, and Use of Nanoparticles as Contrast Agents forMRI20825.
Abstract: 1. Introduction 20642. Synthesis of Magnetic Nanoparticles 20662.1. Classical Synthesis by Coprecipitation 20662.2. Reactions in Constrained Environments 20682.3. Hydrothermal and High-TemperatureReactions20692.4. Sol-Gel Reactions 20702.5. Polyol Methods 20712.6. Flow Injection Syntheses 20712.7. Electrochemical Methods 20712.8. Aerosol/Vapor Methods 20712.9. Sonolysis 20723. Stabilization of Magnetic Particles 20723.1. Monomeric Stabilizers 20723.1.1. Carboxylates 20733.1.2. Phosphates 20733.2. Inorganic Materials 20733.2.1. Silica 20733.2.2. Gold 20743.3. Polymer Stabilizers 20743.3.1. Dextran 20743.3.2. Polyethylene Glycol (PEG) 20753.3.3. Polyvinyl Alcohol (PVA) 20753.3.4. Alginate 20753.3.5. Chitosan 20753.3.6. Other Polymers 20753.4. Other Strategies for Stabilization 20764. Methods of Vectorization of the Particles 20765. Structural and Physicochemical Characterization 20785.1. Size, Polydispersity, Shape, and SurfaceCharacterization20795.2. Structure of Ferro- or FerrimagneticNanoparticles20805.2.1. Ferro- and Ferrimagnetic Nanoparticles 20805.3. Use of Nanoparticles as Contrast Agents forMRI20825.3.1. High Anisotropy Model 20845.3.2. Small Crystal and Low Anisotropy EnergyLimit20855.3.3. Practical Interests of Magnetic NuclearRelaxation for the Characterization ofSuperparamagnetic Colloid20855.3.4. Relaxation of Agglomerated Systems 20856. Applications 20866.1. MRI: Cellular Labeling, Molecular Imaging(Inflammation, Apoptose, etc.)20866.2.

5,915 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
27 Feb 2015-Science
TL;DR: The design and fabrication of a metal-free carbon nanodot–carbon nitride (C3N4) nanocomposite is reported and its impressive performance for photocatalytic solar water splitting is demonstrated.
Abstract: The use of solar energy to produce molecular hydrogen and oxygen (H2 and O2) from overall water splitting is a promising means of renewable energy storage. In the past 40 years, various inorganic and organic systems have been developed as photocatalysts for water splitting driven by visible light. These photocatalysts, however, still suffer from low quantum efficiency and/or poor stability. We report the design and fabrication of a metal-free carbon nanodot-carbon nitride (C3N4) nanocomposite and demonstrate its impressive performance for photocatalytic solar water splitting. We measured quantum efficiencies of 16% for wavelength λ = 420 ± 20 nanometers, 6.29% for λ = 580 ± 15 nanometers, and 4.42% for λ = 600 ± 10 nanometers, and determined an overall solar energy conversion efficiency of 2.0%. The catalyst comprises low-cost, Earth-abundant, environmentally friendly materials and shows excellent stability.

3,553 citations