scispace - formally typeset
Search or ask a question
Author

Zhenxia Chen

Bio: Zhenxia Chen is an academic researcher from Fudan University. The author has contributed to research in topics: Metal-organic framework & Ligand. The author has an hindex of 35, co-authored 138 publications receiving 5871 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A luminescent mixed lanthanide metal-organic framework approach has been realized to explore luminescence thermometers that is not only more robust, reliable, and instantaneous but also has higher sensitivity than the parent MOF Tb-DMBDC based on one emission at a wide range from 10 to 300 K.
Abstract: A luminescent mixed lanthanide metal–organic framework approach has been realized to explore luminescent thermometers. The targeted self-referencing luminescent thermometer Eu0.0069Tb0.9931-DMBDC (DMBDC = 2, 5-dimethoxy-1, 4-benzenedicarboxylate) based on two emissions of Tb3+ at 545 nm and Eu3+ at 613 nm is not only more robust, reliable, and instantaneous but also has higher sensitivity than the parent MOF Tb-DMBDC based on one emission at a wide range from 10 to 300 K.

964 citations

Journal ArticleDOI
TL;DR: By modulating the synthetic strategy based on the solvothermal and liquid diffusion method, seven further MOFs (including at least three zeolitic MOFs) of zinc(II) imidazolates, [Zn(im)2.x G] (G=guest molecule, x=0.2-1) 1 a-7 a, have been successfully synthesized.
Abstract: Attempts to create metal-organic frameworks (MOFs) with zeolitic topologies, metal (zinc(II) and cobalt(II)) imidazolates have repeatedly been used as the metal-organic motifs of inorganic silicate analogues. By modulating the synthetic strategy based on the solvothermal and liquid diffusion method, seven further MOFs (including at least three zeolitic MOFs) of zinc(II) imidazolates, [Zn(im)2.x G] (G=guest molecule, x=0.2-1) 1 a-7 a, have been successfully synthesized. Of these, 1 a-3 a are isostructural with the previously reported cobalt analogues 1 b-3 b, respectively, while 4 a-7 a are new members of the metal imidazolate MOF family. Complex 4 a exhibits a structure related to silicate CaAl2Si2O8 of CrB4 topology, but with a higher network symmetry; complex 5 a has a structure with zeolitic DFT topology that was discovered in zeolite-related materials of DAF-2, UCSB-3, and UCSB-3GaGe; complex 6 a demonstrates an unprecedented zeolite-like topology with one dimensional channels with 10-rings; and 7 a displays a structure of natural zeolite GIS (gismondine) topology. All of these polymorphous MOFs were created only by using certain solvents as structure-directing agents (SDAs). Further extensive metal-organic frameworks with zeolitic topologies can be envisaged if other solvents were to be used.

340 citations

Journal ArticleDOI
Xiao-Bo Hu1, Zhenxia Chen1, Gangfeng Tang1, Jun-Li Hou1, Zhan-Ting Li1 
TL;DR: Hydrazide-appended pillar[5]arene derivatives have been synthesized and X-ray crystal structure analysis and (1)H NMR studies revealed that the molecules adopt unique tubular conformations.
Abstract: Hydrazide-appended pillar[5]arene derivatives have been synthesized. X-ray crystal structure analysis and 1H NMR studies revealed that the molecules adopt unique tubular conformations. Inserting the molecules into the lipid membranes of vesicles leads to the transport of water through the channels produced by single molecules, as supported by dynamic light scattering and cryo-SEM experiments. The channels exhibit the transport activity at a very low channel to lipid ratio (0.027 mol %), and a water permeability of 8.6 × 10–10 cm s–1 is realized. In addition, like natural water channel proteins, the artificial systems also block the transport of protons.

331 citations

Journal ArticleDOI
Wen Si1, Lei Chen1, Xiao-Bo Hu1, Gangfeng Tang1, Zhenxia Chen1, Jun-Li Hou1, Zhan-Ting Li1 
TL;DR: Single-channel conductance measurements and isotope effect experiments under acidic conditions showed selective proton transport through the channels, which were mediated by water wires formed in the pillar[5]arene backbones.
Abstract: Lined up water molecules: Artificial transmembrane channels from pillar[5]arene monomeric and dimeric derivatives have been prepared. Single-channel conductance measurements and isotope effect experiments under acidic conditions showed selective proton transport through the channels, which were mediated by water wires formed in the pillar[5]arene backbones (see picture).

324 citations

Journal ArticleDOI
TL;DR: The resulting host-guest complexes represent one of the most efficient recognition motifs based on pillararenes and the formation of interpenetrated geometries are reported.

284 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
20 Jun 2002-Nature
TL;DR: The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials, which has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents.
Abstract: "Space—the final frontier." This preamble to a well-known television series captures the challenge encountered not only in space travel adventures, but also in the field of porous materials, which aims to control the size, shape and uniformity of the porous space and the atoms and molecules that define it. The past decade has seen significant advances in the ability to fabricate new porous solids with ordered structures from a wide range of different materials. This has resulted in materials with unusual properties and broadened their application range beyond the traditional use as catalysts and adsorbents. In fact, porous materials now seem set to contribute to developments in areas ranging from microelectronics to medical diagnosis.

4,599 citations

Journal ArticleDOI
TL;DR: This review intends to provide an update of work published since then and focuses on the photoluminescence properties of MOFs and their possible utility in chemical and biological sensing and detection.
Abstract: Metal–organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas A very interesting and well-investigated topic is their optical emission properties and related applications Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011 This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection

3,485 citations