scispace - formally typeset
Search or ask a question
Author

Zhenyuan Miao

Bio: Zhenyuan Miao is an academic researcher from Second Military Medical University. The author has contributed to research in topics: Camptothecin & Topoisomerase. The author has an hindex of 31, co-authored 113 publications receiving 3134 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry and is expected to be a comprehensive, authoritative, and critical review of the chal cone template to the chemistry community.
Abstract: Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.

800 citations

Journal ArticleDOI
TL;DR: In vitro antIFungal assay revealed that the antifungal activities of these novel azoles were greatly improved, which confirmed the reliability of the model from molecular modeling.
Abstract: In a continuing effort to develop highly potent azole antifungal agents, the three-dimensional quantitative structure-activity relationship methods, CoMFA and CoMSIA, were applied using a set of novel azole antifungal compounds. The binding mode of the compounds at the active site of lanosterol 14alpha-demethylase was further explored using the flexible docking method. Various hydrophobic, van der Waals, pi-pi stacking, and hydrogen bonding interactions were observed between the azoles and the enzyme. Based on results from the molecular modeling, a receptor-based pharmacophore model was established to guide the rational optimization of the azole antifungal agents. Thus, a total of 57 novel azoles were designed and synthesized by a three-step optimization process. In vitro antifungal assay revealed that the antifungal activities of these novel azoles were greatly improved, which confirmed the reliability of the model from molecular modeling.

150 citations

Journal ArticleDOI
TL;DR: A library of novel evodiamine derivatives bearing various substitutions or modified scaffold were synthesized and showed substantial increase of the antitumor activity, with GI(50) values lower than 3 nM.
Abstract: Evodiamine is a quinazolinocarboline alkaloid isolated from the fruits of traditional Chinese herb Evodiae fructus. Previously, we identified N13-substituted evodiamine derivatives as potent topoisomerase I inhibitors by structure-based virtual screening and lead optimization. Herein, a library of novel evodiamine derivatives bearing various substitutions or modified scaffold were synthesized. Among them, a number of evodiamine derivatives showed substantial increase of the antitumor activity, with GI50 values lower than 3 nM. Moreover, these highly potent compounds can effectively induce the apoptosis of A549 cells. Interestingly, further computational target prediction calculations in combination with biological assays confirmed that the evodiamine derivatives acted by dual inhibition of topoisomerases I and II. Moreover, several hydroxyl derivatives, such as 10-hydroxyl evodiamine (10j) and 3-amino-10-hydroxyl evodiamine (18g), also showed good in vivo antitumor efficacy and low toxicity at the dose of...

147 citations

Journal ArticleDOI
TL;DR: Antitumor mechanism and target profiling studies indicate that compound 66c is the first-in-class triple topoisomerase I/topoisomersase II/tubulin inhibitor.
Abstract: A critical question in natural product-based drug discovery is how to translate the product into drug-like molecules with optimal pharmacological properties. The generation of natural product-inspired scaffold diversity is an effective but challenging strategy to investigate the broader chemical space and identify promising drug leads. Extending our efforts to the natural product evodiamine, a diverse library containing 11 evodiamine-inspired novel scaffolds and their derivatives were designed and synthesized. Most of them showed good to excellent antitumor activity against various human cancer cell lines. In particular, 3-chloro-10-hydroxyl thio-evodiamine (66c) showed excellent in vitro and in vivo antitumor efficacy with good tolerability and low toxicity. Antitumor mechanism and target profiling studies indicate that compound 66c is the first-in-class triple topoisomerase I/topoisomerase II/tubulin inhibitor. Overall, this study provided an effective strategy for natural product-based drug discovery.

142 citations

Journal ArticleDOI
TL;DR: The successful cases from the recent five year studies are used to illustrate how these approaches are implemented to uncover and optimize small molecule PPI inhibitors and notably some of them have become promising therapeutics.
Abstract: Correction for 'State-of-the-art strategies for targeting protein-protein interactions by small-molecule inhibitors' by Chunquan Sheng et al., Chem. Soc. Rev., 2015, DOI: 10.1039/c5cs00252d.

126 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography are provided, as well as new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds.
Abstract: The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, 18F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in po...

2,149 citations

Journal ArticleDOI
TL;DR: In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.
Abstract: The electronic properties and relatively small size of fluorine endow it with considerable versatility as a bioisostere and it has found application as a substitute for lone pairs of electrons, the hydrogen atom, and the methyl group while also acting as a functional mimetic of the carbonyl, carbinol, and nitrile moieties. In this context, fluorine substitution can influence the potency, conformation, metabolism, membrane permeability, and P-gp recognition of a molecule and temper inhibition of the hERG channel by basic amines. However, as a consequence of the unique properties of fluorine, it features prominently in the design of higher order structural metaphors that are more esoteric in their conception and which reflect a more sophisticated molecular construction that broadens biological mimesis. In this Perspective, applications of fluorine in the construction of bioisosteric elements designed to enhance the in vitro and in vivo properties of a molecule are summarized.

1,199 citations

Journal ArticleDOI
TL;DR: This research presents a novel, scalable, and scalable approaches that can be applied to the rapidly changing and rapidly changing environment of drug discovery and development.
Abstract: Fraser F. Fleming,* Lihua Yao, P. C. Ravikumar, Lee Funk, and Brian C. Shook Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282-1530, Mylan Pharmaceuticals Inc., 781 Chestnut Ridge Road, Morgantown, West Virginia 26505, and Johnson & Johnson Pharmaceutical Research and Development, L.L.C., Welsh and McKean Roads, P.O. Box 776, Spring House, Pennsylvania 19477

1,058 citations

Journal ArticleDOI
TL;DR: ROS homeostasis is described, principles of their investigation and technical approaches to investigate ROS-related processes are described, and a classification of oxidative stress based on its intensity is proposed.

1,036 citations

Journal ArticleDOI
TL;DR: This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry and is expected to be a comprehensive, authoritative, and critical review of the chal cone template to the chemistry community.
Abstract: Privileged structures have been widely used as an effective template in medicinal chemistry for drug discovery. Chalcone is a common simple scaffold found in many naturally occurring compounds. Many chalcone derivatives have also been prepared due to their convenient synthesis. These natural products and synthetic compounds have shown numerous interesting biological activities with clinical potentials against various diseases. This review aims to highlight the recent evidence of chalcone as a privileged scaffold in medicinal chemistry. Multiple aspects of chalcone will be summarized herein, including the isolation of novel chalcone derivatives, the development of new synthetic methodologies, the evaluation of their biological properties, and the exploration of the mechanisms of action as well as target identification. This review is expected to be a comprehensive, authoritative, and critical review of the chalcone template to the chemistry community.

800 citations