scispace - formally typeset
Search or ask a question
Author

Zhi-Xiang Wang

Bio: Zhi-Xiang Wang is an academic researcher from University of Erlangen-Nuremberg. The author has contributed to research in topics: Möbius aromaticity & Aromaticity. The author has an hindex of 1, co-authored 1 publications receiving 807 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Analysis of the basic π-aromatic (benzene) and antiaromatic systems by dissected nucleus-independent chemical shifts (NICS) shows the contrasting diatropics and paratropic effects, but also reveals subtleties and unexpected details.

836 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Five increasingly sophisticated aromaticity indexes, based on nucleus-independent chemical shifts (NICS), were evaluated against a uniform set of aromatic stabilization energies (ASE) for 75 mono- and polyheterocyclic five-membered rings to find the most fundamentally grounded index, NICS(0)pizz.

892 citations

Journal ArticleDOI
TL;DR: The intention of this review is to provide a detailed analysis of the various supramolecular interactions of triazoles in comparison to established functional units, which may serve as guidelines for further applications.
Abstract: The research on 1,2,3-triazoles has been lively and ever-growing since its stimulation by the advent of click chemistry The attractiveness of 1H-1,2,3-triazoles and their derivatives originates from their unique combination of facile accessibility via click chemistry and truly diverse supramolecular interactions, which enabled myriads of applications in supramolecular and coordination chemistry The nitrogen-rich triazole features a highly polarized carbon atom allowing the complexation of anions by hydrogen and halogen bonding or, in the case of the triazolium salts, via charge-assisted hydrogen and halogen bonds On the other hand, the triazole offers several N-coordination modes including coordination via anionic and cationic nitrogen donors of triazolate and triazolium ions, respectively After CH-deprotonation of the triazole and the triazolium, powerful carbanionic and mesoionic carbene donors, respectively, are available The latter coordination mode even features non-innocent ligand behavior Moreover, these supramolecular interactions can be combined, eg, in ion-pair recognition, preorganization by intramolecular hydrogen bond donation and acceptance, and in bimetallic complexes Ultimately, by clicking two building blocks into place, the triazole emerges as a most versatile functional unit allowing very successful applications, eg, in anion recognition, catalysis, and photochemistry, thus going far beyond the original purpose of click chemistry It is the intention of this review to provide a detailed analysis of the various supramolecular interactions of triazoles in comparison to established functional units, which may serve as guidelines for further applications

626 citations

Journal ArticleDOI
TL;DR: H-bond plays a double role in biological systems: on one hand, as a relatively strong directional interaction, it leads to relatively stable supramolecular structures, and on the other hand, because of dynamic features of the proton, it is an active site for initiation of chemical reactions.
Abstract: Among many various kinds of molecular interactions, the H-bond has a special position. The term is ubiquitous in the world that surrounds us, but also it is often applied in different ways. The H-bond is of great importance in natural sciences. This relates particularly to biological aspects, such as molecular recognition that could be a basis for the creation of life,1-4 formation of higher order structures of peptides and nucleic acids,5 and biochemical processes, particularly the enzymes catalyzed.6,7 One can say that the H-bond plays a double role in biological systems: on one hand, as a relatively strong directional interaction, it leads to relatively stable supramolecular structures, and on the other hand, because of dynamic features of the proton, it is an active site for initiation of chemical reactions. H-bonds are the source of specific properties of associated liquids, with water being the most popular among them.8 Water as a medium in which life was most probably created is saturated by H-bonds with highly mobile protons in between, even in the solid state.9 In many crystal lattices of organic compounds, the H-bonds are a decisive factor governing packing.10 In designing new interesting crystal structures, which is the subject of fast developing crystal engineer* To whom correspondence should be addressed. E-mail: slagra@ uni.lodz.pl or slagra@ccmsi.us. Fax: +48-42-6790447. 3513 Chem. Rev. 2005, 105, 3513−3560

583 citations

Journal ArticleDOI
TL;DR: An alternative NICS-based method is introduced that is applied to several (4n + 2)- and 4n pi-electron systems (molecules and ions) in the singlet and triplet electronic states, including some of the problematic systems mentioned above.
Abstract: Nucleus-independent chemical shifts (NICS) have been used extensively for the identification of aromaticity properties of molecules, ions, intermediates, and transition states since their introduction in 1996 by Schleyer et al. Initially, probes (bq's) were placed at the centers of systems (NICS(0)) and later, 1A above the molecular planes (NICS(1)). However, contradicting assignments of aromaticity by NICS and other methods were found for some systems. In this article, an alternative NICS-based method is introduced. The method is based on scanning NICS values over a distance and separating them into in-plane and out-of plane contributions. The shapes of the plots of the chemical shifts and their components as a function of the distance of the NICS probe (bq) from the molecular plane give a clear indication of diamagnetic and paramagnetic ring currents. This method is applied to several (4n + 2)- and 4n π-electron systems (molecules and ions) in the singlet and triplet electronic states, including some of...

579 citations