scispace - formally typeset
Search or ask a question
Author

Zhi-Zhou Shi

Other affiliations: Peking Union Medical College
Bio: Zhi-Zhou Shi is an academic researcher from Kunming University of Science and Technology. The author has contributed to research in topics: Comparative genomic hybridization & Cell cycle. The author has an hindex of 18, co-authored 34 publications receiving 1330 citations. Previous affiliations of Zhi-Zhou Shi include Peking Union Medical College.

Papers
More filters
Journal ArticleDOI
TL;DR: The whole-exome or targeted deep sequencing of 139 paired ESCC cases and analysis of somatic copy number variations (SCNV) of over 180 ESCCs provide an important molecular foundation for understanding esophageal tumors and developing therapeutic targets.
Abstract: Esophageal squamous cell carcinoma (ESCC) is prevalent worldwide and particularly common in certain regions of Asia. Here we report the whole-exome or targeted deep sequencing of 139 paired ESCC cases, and analysis of somatic copy number variations (SCNV) of over 180 ESCCs. We identified previously uncharacterized mutated genes such as FAT1, FAT2, ZNF750 and KMT2D, in addition to those already known (TP53, PIK3CA and NOTCH1). Further SCNV evaluation, immunohistochemistry and biological analysis suggested their functional relevance in ESCC. Notably, RTK-MAPK-PI3K pathways, cell cycle and epigenetic regulation are frequently dysregulated by multiple molecular mechanisms in this cancer. Our approaches also uncovered many druggable candidates, and XPO1 was further explored as a therapeutic target because it showed both gene mutation and protein overexpression. Our integrated study unmasks a number of novel genetic lesions in ESCC and provides an important molecular foundation for understanding esophageal tumors and developing therapeutic targets.

484 citations

Journal ArticleDOI
TL;DR: These integrated investigations of spatial ITH and clonal evolution provide an important molecular foundation for enhanced understanding of tumorigenesis and progression in ESCC.
Abstract: Esophageal squamous cell carcinoma (ESCC) is among the most common malignancies, but little is known about its spatial intratumoral heterogeneity (ITH) and temporal clonal evolutionary processes. To address this, we performed multiregion whole-exome sequencing on 51 tumor regions from 13 ESCC cases and multiregion global methylation profiling for 3 of these 13 cases. We found an average of 35.8% heterogeneous somatic mutations with strong evidence of ITH. Half of the driver mutations located on the branches of tumor phylogenetic trees targeted oncogenes, including PIK3CA, NFE2L2 and MTOR, among others. By contrast, the majority of truncal and clonal driver mutations occurred in tumor-suppressor genes, including TP53, KMT2D and ZNF750, among others. Interestingly, phyloepigenetic trees robustly recapitulated the topological structures of the phylogenetic trees, indicating a possible relationship between genetic and epigenetic alterations. Our integrated investigations of spatial ITH and clonal evolution provide an important molecular foundation for enhanced understanding of tumorigenesis and progression in ESCC.

188 citations

Journal ArticleDOI
TL;DR: It is found that overexpression of PLK1 was an independent prognostic factor and significantly correlated with survivin, an antiapoptotic protein, in esophageal squamous cell carcinoma (ESCC), and data suggest thatPLK1 might be a useful prognostic marker and a potential therapeutic target for ESCC.
Abstract: PLK1 is essential for the maintenance of genomic stability during mitosis. In our study, we found that overexpression of PLK1 was an independent prognostic factor (RR=4.253, p=0.020) and significantly correlated with survivin, an antiapoptotic protein, in esophageal squamous cell carcinoma (ESCC). Reverse transcription-polymerase chain reaction and fluorescence in situ hybridization (FISH) revealed upregulation of PLK1 mRNA and amplification of PLK1 gene, respectively. Depletion of PLK1 activated the intrinsic apoptotic pathway, which was substantiated by loss of mitochondrial membrane potential, reduction of Mcl-1 and Bcl-2 as well as activation of caspase-9. Coimmunoprecipitation and confocal microscopy displayed that PLK1 was associated with survivin and PLK1 depletion led to downregulation of survivin. Cotransfection of survivin constructs could partially reverse PLK1-depletion-induced apoptosis. These data suggest that PLK1 might be a useful prognostic marker and a potential therapeutic target for ESCC. Survivin is probably involved in antiapoptotic function of PLK1.

101 citations

Journal ArticleDOI
TL;DR: The results indicate that PRKCI is an attractive target in the 3q26 amplicon and that it may serve as a molecular marker for metastasis and occult advanced tumor stages in ESCC.
Abstract: DNA amplification is one of the mechanisms to activate genes that are implicated in neoplastic transformation and gain of chromosome band 3q26 is a common event in squamous cell carcinomas. The aim of the present work was to identify the specific target gene from four candidates (MDS1, PRKCI, ECT2, and PIK3CA) located on 3q26 amplification in esophageal squamous cell carcinomas (ESCCs). To assess the prevalence of copy number gains of putative genes, fluorescence in situ hybridization (FISH) was applied on 108 ESCCs and 9 ESCC cell lines. Our data showed that MDS1 and PRKCI were more frequently gained. Positive correlation was found only for PRKCI between amplification and tumor size (P = 0.043), lymph node metastasis (P = 0.015) and clinical stage (P = 0.002). PRKCI gene amplification was highly correlated with protein overexpression (P = 0.009), suggesting that gene amplification is one important mechanism involved in PRKCI overexpression. To investigate further the role of PRKCI alteration in esophageal tumors, a tissue microarray containing samples from 180 ESCCs was used for immunohistochemistry analysis. Statistical analysis revealed that PRKCI overexpression was correlated with lymph node metastasis (P = 0.002) and higher stage (P = 0.004). Performing multivariate logistic regression analysis, a significant association between PRKCI overexpression and presence of lymph node metastasis was found, which was independent of T-stage of the primary tumors (P = 0.004). Our results indicate that PRKCI is an attractive target in the 3q26 amplicon and that it may serve as a molecular marker for metastasis and occult advanced tumor stages in ESCC. © 2007 Wiley-Liss, Inc.

79 citations

Journal ArticleDOI
TL;DR: Copy number aberrations in both esophageal dysplasia and ESCC may be useful as potential biomarkers for early detection and ANO1 may be a candidate target gene in esophagal tumorigenesis.
Abstract: Purpose: Our aim was to identify frequent genomic aberrations in both esophageal squamous cell carcinoma (ESCC) and esophageal dysplasia and to discover important copy number-driving genes and microRNAs (miRNA) in ESCC. Experimental Design: We conducted array-based comparative genomic hybridization (array CGH) on 59 ESCC resection samples and 16 dysplasia biopsy samples. Expression of genes at 11q13.3 was analyzed by real-time PCR (RT-PCR) and immunohistochemistry (IHC). Integrated analysis was conducted to identify genes or miRNAs with copy number-expression correlations. Results: Array CGH identified 11 amplifications and eight homozygous deletions in ESCC. Integrated analysis of array CGH data with matched gene expression microarray data showed that 90 overexpressed genes and 24 underexpressed genes were consistent with DNA copy number changes, including 12 copy number-driving miRNAs. In esophageal dysplasia, six gains, four losses, 12 amplifications, and four homozygous deletions were detected. Amplifications of 7p11.2 and 11q13.2–11q13.3 ( CCND1 ) and homozygous deletion at 9p21.3 ( CDKN2A ) were consistent genomic changes in both dysplasia and carcinoma. ANO1 at 11q13.3 was overexpressed at the mRNA and protein levels in tumors, and higher mRNA expression was correlated with the copy number increase. In particular, ANO1 expression was elevated in moderate dysplasia compared with normal esophageal epithelium. IHC revealed that ANO1 overexpression was positively correlated with lymph node metastasis and advanced clinical stage. Knockdown of ANO1 significantly inhibited the proliferation of KYSE30 and KYSE510 cells. Conclusion: Copy number aberrations in both esophageal dysplasia and ESCC may be useful as potential biomarkers for early detection. In addition, ANO1 may be a candidate target gene in esophageal tumorigenesis. Clin Cancer Res; 19(21); 5867–78. ©2013 AACR .

76 citations


Cited by
More filters
01 Feb 2015
TL;DR: In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract: The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

4,409 citations

Journal ArticleDOI
TL;DR: An R Bioconductor package, Maftools, is described, which offers a multitude of analysis and visualization modules that are commonly used in cancer genomic studies, including driver gene identification, pathway, signature, enrichment, and association analyses, and is independent of larger alignment files.
Abstract: Numerous large-scale genomic studies of matched tumor-normal samples have established the somatic landscapes of most cancer types. However, the downstream analysis of data from somatic mutations entails a number of computational and statistical approaches, requiring usage of independent software and numerous tools. Here, we describe an R Bioconductor package, Maftools, which offers a multitude of analysis and visualization modules that are commonly used in cancer genomic studies, including driver gene identification, pathway, signature, enrichment, and association analyses. Maftools only requires somatic variants in Mutation Annotation Format (MAF) and is independent of larger alignment files. With the implementation of well-established statistical and computational methods, Maftools facilitates data-driven research and comparative analysis to discover novel results from publicly available data sets. In the present study, using three of the well-annotated cohorts from The Cancer Genome Atlas (TCGA), we describe the application of Maftools to reproduce known results. More importantly, we show that Maftools can also be used to uncover novel findings through integrative analysis.

1,990 citations

Journal ArticleDOI
TL;DR: The driving forces behind intratumoural heterogeneity and the current approaches used to combat this heterogeneity and its consequences are discussed and how clinical assessments of tumour heterogeneity might facilitate the development of more-effective personalized therapies are explored.
Abstract: Cancer is a dynamic disease. During the course of disease, cancers generally become more heterogeneous. As a result of this heterogeneity, the bulk tumour might include a diverse collection of cells harbouring distinct molecular signatures with differential levels of sensitivity to treatment. This heterogeneity might result in a non-uniform distribution of genetically distinct tumour-cell subpopulations across and within disease sites (spatial heterogeneity) or temporal variations in the molecular makeup of cancer cells (temporal heterogeneity). Heterogeneity provides the fuel for resistance; therefore, an accurate assessment of tumour heterogeneity is essential for the development of effective therapies. Multiregion sequencing, single-cell sequencing, analysis of autopsy samples, and longitudinal analysis of liquid biopsy samples are all emerging technologies with considerable potential to dissect the complex clonal architecture of cancers. In this Review, we discuss the driving forces behind intratumoural heterogeneity and the current approaches used to combat this heterogeneity and its consequences. We also explore how clinical assessments of tumour heterogeneity might facilitate the development of more-effective personalized therapies.

1,872 citations

Journal ArticleDOI
09 Feb 2017-Cell
TL;DR: It is suggested that bold approaches to drug development, harnessing the adaptive properties of the immune-microenvironment while limiting those of the tumor, combined with advances in clinical trial-design, will improve patient outcome.

1,800 citations

Journal ArticleDOI
12 Jan 2017-Nature
TL;DR: The authors' analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus and these data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.
Abstract: Oesophageal cancers are prominent worldwide; however, there are few targeted therapies and survival rates for these cancers remain dismal. Here we performed a comprehensive molecular analysis of 164 carcinomas of the oesophagus derived from Western and Eastern populations. Beyond known histopathological and epidemiologic distinctions, molecular features differentiated oesophageal squamous cell carcinomas from oesophageal adenocarcinomas. Oesophageal squamous cell carcinomas resembled squamous carcinomas of other organs more than they did oesophageal adenocarcinomas. Our analyses identified three molecular subclasses of oesophageal squamous cell carcinomas, but none showed evidence for an aetiological role of human papillomavirus. Squamous cell carcinomas showed frequent genomic amplifications of CCND1 and SOX2 and/or TP63, whereas ERBB2, VEGFA and GATA4 and GATA6 were more commonly amplified in adenocarcinomas. Oesophageal adenocarcinomas strongly resembled the chromosomally unstable variant of gastric adenocarcinoma, suggesting that these cancers could be considered a single disease entity. However, some molecular features, including DNA hypermethylation, occurred disproportionally in oesophageal adenocarcinomas. These data provide a framework to facilitate more rational categorization of these tumours and a foundation for new therapies.

1,289 citations