scispace - formally typeset
Search or ask a question
Author

Zhichao Han

Bio: Zhichao Han is an academic researcher from eBay. The author has contributed to research in topics: Graph (abstract data type) & Computer science. The author has an hindex of 2, co-authored 5 publications receiving 8 citations.

Papers
More filters
Proceedings ArticleDOI
14 Aug 2021
TL;DR: DeGNN as mentioned in this paper proposes a simple yet efficient graph decomposition approach to improve the performance of general graph neural networks (GNNs) in mining from graph-structured data.
Abstract: Mining from graph-structured data is an integral component of graph data management. A recent trending technique, graph convolutional network (GCN), has gained momentum in the graph mining field, and plays an essential part in numerous graph-related tasks. Although the emerging GCN optimization techniques bring improvements to specific scenarios, they perform diversely in different applications and introduce many trial-and-error costs for practitioners. Moreover, existing GCN models often suffer from oversmoothing problem. Besides, the entanglement of various graph patterns could lead to non-robustness and harm the final performance of GCNs. In this work, we propose a simple yet efficient graph decomposition approach to improve the performance of general graph neural networks. We first empirically study existing graph decomposition methods and propose an automatic connectivity-ware graph decomposition algorithm, DeGNN. To provide a theoretical explanation, we then characterize GCN from the information-theoretic perspective and show that under certain conditions, the mutual information between the output after l layers and the input of GCN converges to 0 exponentially with respect to l. On the other hand, we show that graph decomposition can potentially weaken the condition of such convergence rate, alleviating the information loss when GCN becomes deeper. Extensive experiments on various academic benchmarks and real-world production datasets demonstrate that graph decomposition generally boosts the performance of GNN models. Moreover, our proposed solution DeGNN achieves state-of-the-art performances on almost all these tasks.

15 citations

Posted ContentDOI
Susie Xi Rao1, Shuai Zhang1, Zhichao Han2, Zitao Zhang2, Wei Min2, Zhiyao Chen2, Yinan Shan2, Yang Zhao2, Ce Zhang1 
TL;DR: Xia et al. as mentioned in this paper presented xFraud, an explainable fraud transaction prediction system composed of a predictor which learns expressive representations for malicious transaction detection from the heterogeneous transaction graph via a self-attentive heterogeneous graph neural network, and an explainer that generates meaningful and human understandable explanations from graphs to facilitate further process in business unit.
Abstract: At online retail platforms, it is crucial to actively detect risks of fraudulent transactions to improve our customer experience, minimize loss, and prevent unauthorized chargebacks. Traditional rule-based methods and simple feature-based models are either inefficient or brittle and uninterpretable. The graph structure that exists among the heterogeneous typed entities of the transaction logs is informative and difficult to fake. To utilize the heterogeneous graph relationships and enrich the explainability, we present xFraud, an explainable Fraud transaction prediction system. xFraud is composed of a predictor which learns expressive representations for malicious transaction detection from the heterogeneous transaction graph via a self-attentive heterogeneous graph neural network, and an explainer that generates meaningful and human understandable explanations from graphs to facilitate further process in business unit. In our experiments with xFraud on two real transaction networks with up to ten millions transactions, we are able to achieve an area under a curve (AUC) score that outperforms baseline models and graph embedding methods. In addition, we show how the explainer could benefit the understanding towards model predictions and enhance model trustworthiness for real-world fraud transaction cases.

10 citations

Journal ArticleDOI
TL;DR: This work proposes a versatile and real-time trajectory optimization method that can generate a high-quality feasible trajectory using a full vehicle model under arbitrary constraints, leveraging the differential property of car-like robots to simplify the trajectory planning problem.
Abstract: —As a core part of autonomous driving systems, motion planning has received extensive attention from academia and industry. However, there is no efficient trajectory planning solution capable of spatial-temporal joint optimization due to nonholonomic dynamics, particularly in the presence of unstruc- tured environments and dynamic obstacles. To bridge the gap, we propose a versatile and real-time trajectory optimization method that can generate a high-quality feasible trajectory using a full vehicle model under arbitrary constraints. By leveraging the differential flatness property of car-like robots, we use flat outputs to analytically formulate all feasibility constraints to simplify the trajectory planning problem. Moreover, obstacle avoidance is achieved with full dimensional polygons to generate less conservative trajectories with safety guarantees, especially in tightly constrained spaces. We present comprehensive bench- marks with cutting-edge methods, demonstrating the significance of the proposed method in terms of efficiency and trajectory quality. Real-world experiments verify the practicality of our algorithm. We will release our codes as open-source packages with the purpose for the reference of the research community. 1

5 citations

Posted Content
Susie Xi Rao1, Shuai Zhang1, Zhichao Han2, Zitao Zhang2, Wei Min2, Mo Cheng2, Yinan Shan2, Yang Zhao2, Ce Zhang1 
TL;DR: Wang et al. as discussed by the authors proposed a Dynamic Heterogeneous Graph Neural Network framework to capture suspicious massive registrations (DHGReg), which first constructs a dynamic heterogeneous graph from the registration data, which is composed of a structural subgraph and a temporal subgraph.
Abstract: Massive account registration has raised concerns on risk management in e-commerce companies, especially when registration increases rapidly within a short time frame. To monitor these registrations constantly and minimize the potential loss they might incur, detecting massive registration and predicting their riskiness are necessary. In this paper, we propose a Dynamic Heterogeneous Graph Neural Network framework to capture suspicious massive registrations (DHGReg). We first construct a dynamic heterogeneous graph from the registration data, which is composed of a structural subgraph and a temporal subgraph. Then, we design an efficient architecture to predict suspicious/benign accounts. Our proposed model outperforms the baseline models and is computationally efficient in processing a dynamic heterogeneous graph constructed from a real-world dataset. In practice, the DHGReg framework would benefit the detection of suspicious registration behaviors at an early stage.

2 citations

12 Oct 2022
TL;DR: In this article , a decentralized framework for car-like robotic swarm which is capable of real-time planning in cluttered environments is proposed, where path finding is guided by environmental topology information to avoid frequent topological change, and search-based speed planning is leveraged to escape from infeasible initial value's local minima.
Abstract: Robot swarm is a hot spot in robotic research community. In this paper, we propose a decentralized framework for car-like robotic swarm which is capable of real-time planning in cluttered environments. In this system, path finding is guided by environmental topology information to avoid frequent topological change, and search-based speed planning is leveraged to escape from infeasible initial value's local minima. Then spatial-temporal optimization is employed to generate a safe, smooth and dynamically feasible trajectory. During optimization, the trajectory is discretized by fixed time steps. Penalty is imposed on the signed distance between agents to realize collision avoidance, and differential flatness cooperated with limitation on front steer angle satisfies the non-holonomic constraints. With trajectories broadcast to the wireless network, agents are able to check and prevent potential collisions. We validate the robustness of our system in simulation and real-world experiments. Code will be released as open-source packages.

Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability can be found in this article , where the authors give a taxonomy of the related methods and formulate the general frameworks for the multiple categories of trustworthy GNN.
Abstract: Graph Neural Networks (GNNs) have made rapid developments in the recent years. Due to their great ability in modeling graph-structured data, GNNs are vastly used in various applications, including high-stakes scenarios such as financial analysis, traffic predictions, and drug discovery. Despite their great potential in benefiting humans in the real world, recent study shows that GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data and lack interpretability, which have risk of causing unintentional harm to the users and society. For example, existing works demonstrate that attackers can fool the GNNs to give the outcome they desire with unnoticeable perturbation on training graph. GNNs trained on social networks may embed the discrimination in their decision process, strengthening the undesirable societal bias. Consequently, trustworthy GNNs in various aspects are emerging to prevent the harm from GNN models and increase the users’ trust in GNNs. In this paper, we give a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability. For each aspect, we give the taxonomy of the related methods and formulate the general frameworks for the multiple categories of trustworthy GNNs. We also discuss the future research directions of each aspect and connections between these aspects to help achieve trustworthiness. Neural Networks:

36 citations

Proceedings ArticleDOI
09 Jun 2022
TL;DR: This work proposes a new GNN architecture --- Graph Attention Multi-Layer Perceptron (GAMLP), which can capture the underlying correlations between different scales of graph knowledge and achieves state-of-the-art performance while enjoying high scalability and efficiency.
Abstract: Graph neural networks (GNNs) have achieved great success in many graph-based applications. However, the enormous size and high sparsity level of graphs hinder their applications under industrial scenarios. Although some scalable GNNs are proposed for large-scale graphs, they adopt a fixed K-hop neighborhood for each node, thus facing the over-smoothing issue when adopting large propagation depths for nodes within sparse regions. To tackle the above issue, we propose a new GNN architecture --- Graph Attention Multi-Layer Perceptron (GAMLP), which can capture the underlying correlations between different scales of graph knowledge. We have deployed GAMLP in Tencent with the Angel platform, and we further evaluate GAMLP on both real-world datasets and large-scale industrial datasets. Extensive experiments on these 14 graph datasets demonstrate that GAMLP achieves state-of-the-art performance while enjoying high scalability and efficiency. Specifically, it outperforms GAT by 1.3% regarding predictive accuracy on our large-scale Tencent Video dataset while achieving up to 50x training speedup. Besides, it ranks top-1 on both the leaderboards of the largest homogeneous and heterogeneous graph (i.e., ogbn-papers100M and ogbn-mag) of Open Graph Benchmark.

35 citations

Proceedings ArticleDOI
Can Liu1, Li Sun1, Xiang Ao2, Jinghua Feng, Qing He2, Hao Yang1 
14 Aug 2021
TL;DR: In this paper, a heterogeneous transaction-intention network is devised to leverage the cross-interaction information over transactions and intentions, which consists of two types of nodes, namely transaction and intention nodes, and two type of edges, i.e., transaction-transaction edges.
Abstract: Fraud transactions have been the major threats to the healthy development of e-commerce platforms, which not only damage the user experience but also disrupt the orderly operation of the market. User behavioral data is widely used to detect fraud transactions, and recent works show that accurate modeling of user intentions in behavioral sequences can propel further improvements on the performances. However, most existing methods treat each transaction as an independent data instance without considering the transaction-level interactions accessed by transaction attributes, e.g., information on remark, logistics, payment, device and etc., which may fail to achieve satisfactory results in more complex scenarios. In this paper, a novel heterogeneous transaction-intention network is devised to leverage the cross-interaction information over transactions and intentions, which consists of two types of nodes, namely transaction and intention nodes, and two types of edges, i.e., transaction-intention and transaction-transaction edges. Then we propose a graph neural method coined IHGAT(Intention-aware Heterogeneous Graph ATtention networks) that not only perceives sequence-like intentions, but also encodes the relationship among transactions. Extensive experiments on a real-world dataset of Alibaba platform show that our proposed algorithm outperforms state-of-the-art methods in both offline and online modes.

27 citations

Proceedings ArticleDOI
01 Mar 2022
TL;DR: Through deconstructing the message passing mechanism, PaSca presents a novel Scalable Graph Neural Architecture Paradigm (SGAP), together with a general architecture design space consisting of 150k different designs, and implements an auto-search engine that can automatically search well-performing and scalable GNN architectures to balance the trade-off between multiple criteria.
Abstract: Graph neural networks (GNNs) have achieved state-of-the-art performance in various graph-based tasks. However, as mainstream GNNs are designed based on the neural message passing mechanism, they do not scale well to data size and message passing steps. Although there has been an emerging interest in the design of scalable GNNs, current researches focus on specific GNN design, rather than the general design space, limiting the discovery of potential scalable GNN models. This paper proposes PaSca, a new paradigm and system that offers a principled approach to systemically construct and explore the design space for scalable GNNs, rather than studying individual designs. Through deconstructing the message passing mechanism, PaSca presents a novel Scalable Graph Neural Architecture Paradigm (SGAP), together with a general architecture design space consisting of 150k different designs. Following the paradigm, we implement an auto-search engine that can automatically search well-performing and scalable GNN architectures to balance the trade-off between multiple criteria (e.g., accuracy and efficiency) via multi-objective optimization. Empirical studies on ten benchmark datasets demonstrate that the representative instances (i.e., PaSca-V1, V2, and V3) discovered by our system achieve consistent performance among competitive baselines. Concretely, PaSca-V3 outperforms the state-of-the-art GNN method JK-Net by 0.4% in terms of predictive accuracy on our large industry dataset while achieving up to 28.3 × training speedups.

21 citations

Journal ArticleDOI
TL;DR: An overview of non-GNN graph embedding methods, which are based on techniques such as random walks, temporal point processes and neural network learning methods, and GNN-based methods which are the application of deep learning on graph data are provided.
Abstract: Graphs representation learning has been a very active research area in recent years. The goal of graph representation learning is to generate graph representation vectors that capture the structure and features of large graphs accurately. This is especially important because the quality of the graph representation vectors will affect the performance of these vectors in downstream tasks such as node classification, link prediction and anomaly detection. Many techniques are proposed for generating effective graph representation vectors. Two of the most prevalent categories of graph representation learning are graph embedding methods without using graph neural nets (GNN), which we denote as non-GNN based graph embedding methods, and graph neural nets (GNN) based methods. Non-GNN graph embedding methods are based on techniques such as random walks, temporal point processes and neural network learning methods. GNN-based methods, on the other hand, are the application of deep learning on graph data. In this survey, we provide an overview of these two categories and cover the current state-of-the-art methods for both static and dynamic graphs. Finally, we explore some open and ongoing research directions for future work.

11 citations