scispace - formally typeset
Search or ask a question
Author

Zhifeng Ren

Bio: Zhifeng Ren is an academic researcher from Texas Center for Superconductivity. The author has contributed to research in topics: Thermoelectric effect & Thermoelectric materials. The author has an hindex of 122, co-authored 695 publications receiving 71212 citations. Previous affiliations of Zhifeng Ren include Massachusetts Institute of Technology & University of Cincinnati.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper , the authors present a survey of the state of the art in bioinformatics and biomedicine research, including the following papers: http://www.firstpage
Abstract: First Page

5 citations

Journal ArticleDOI
TL;DR: Inelastic neutron scattering measurements are utilized to explore relative changes in the generalized phonon density of states of nanocrystalline Si1 xGex thermoelectric materials prepared via ball-milling and hot-pressing techniques.
Abstract: Inelastic neutron scattering measurements are utilized to explore relative changes in the generalized phonon density of states of nanocrystalline Si1 xGex thermoelectric materials prepared via ball-milling and hot-pressing techniques. Dynamic signatures of Ge clustering can be inferred from the data by referencing the resulting spectra to a density functional theoretical model assuming homogeneous alloying via the virtual-crystal approximation. Comparisons are also presented between as-milled Si nanopowder and bulk, polycrystalline Si where a preferential low-energy enhancement and lifetime broadening of the phonon density of states appear in the nanopowder. Negligible differences are however observed between the phonon spectra of bulk Si andhot-pressed, nanostructured Si samples suggesting that changes to the single-phonon dynamics above 4 meV play only a secondary role in the modified heat conduction of this compound.

5 citations

Proceedings ArticleDOI
TL;DR: In this paper, the authors presented a study of the impact of pollution on clean water and clean energy in the Kingdom of Saudi Arabia, focusing on water and air pollution in renewable energy.
Abstract: King Fahd University of Petroleum and Minerals (Center for Clean Water and Clean Energy at MIT and KFUPM )

5 citations

Journal ArticleDOI
TL;DR: In this article, a series of half-Heusler semiconductors, including NbCoSn, ZrCoSb, TaFeSb and NbSb were analyzed using density functional theory (DFT).
Abstract: We report $^{59}$Co, $^{93}$Nb, and $^{121}$Sb nuclear magnetic resonance (NMR) measurements combined with density functional theory (DFT) calculations on a series of half-Heusler semiconductors, including NbCoSn, ZrCoSb, TaFeSb and NbFeSb, to better understand their electronic properties and general composition-dependent trends. These materials are of interest as potentially high efficiency thermoelectric materials. Compared to the other materials, we find that ZrCoSb tends to have a relatively large amount of local disorder, apparently antisite defects. This contributes to a small excitation gap corresponding to an impurity band near the band edge. In NbCoSn and TaFeSb, Curie-Weiss-type behavior is revealed, which indicates a small density of interacting paramagnetic defects. Very large paramagnetic chemical shifts are observed associated with a Van Vleck mechanism due to closely spaced $d$ bands splitting between the conduction and valence bands. Meanwhile, DFT methods were generally successful in reproducing the chemical shift trend for these half-Heusler materials, and we identify an enhancement of the larger-magnitude shifts, which we connect to electron interaction effects. The general trend is connected to changes in $d$-electron hybridization across the series.

5 citations

Journal ArticleDOI
TL;DR: In this paper, the half-integer flux quantum effect in rings, disks, and blanket films of the high-Tc cuprate superconductors was observed to have sign changes consistent with d-wave symmetry.
Abstract: Direct observations of the half-integer flux quantum effect in rings, disks, and blanket films of the high-Tc cuprate superconductorsY Ba 2 Cu 3O 7−δ (YBCO),GdBa 2 Cu 3O 7−δ (GdBCO),Tl 2 Ba 2 CuO 6+δ (Tl2201), andBi 2 Sr 2 CaCu 2O 8+δ (BSCCO) with three tricrystal substrate geometries show that their gaps have sign changes consistent with d-wave symmetry. The blanket geometry gives the Josephson penetration depth directly, and provides a means for symmetry tests without patterning. Tl2201 is a tetragonal, single-layer, cuprate without chains. When combined with photoemission results, our BSCCO results imply that the gap followsd x 2−y2 symmetry closely. Asymmetric 45 degree bicrystal grain boundary samples show spontaneous magnetization, as expected for d-wave superconductors with interface roughness.

5 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations