scispace - formally typeset
Search or ask a question
Author

Zhifeng Ren

Bio: Zhifeng Ren is an academic researcher from Texas Center for Superconductivity. The author has contributed to research in topics: Thermoelectric effect & Thermoelectric materials. The author has an hindex of 122, co-authored 695 publications receiving 71212 citations. Previous affiliations of Zhifeng Ren include Massachusetts Institute of Technology & University of Cincinnati.


Papers
More filters
Journal ArticleDOI
25 Nov 2020
TL;DR: Subsequently, defect-controlled electrical properties in n-type Mg3Sb2-xBix alloys are revealed and Mg vacancies dominate carrier-scattering mechanisms (ionized impurity scattering and grain boundary scattering).
Abstract: N-type Mg3Sb2-x Bi x alloys have been extensively studied in recent years due to their significantly enhanced thermoelectric figure of merit (zT), thus promoting them as potential candidates for waste heat recovery and cooling applications. In this review, the effects resulting from alloying Mg3Bi2 with Mg3Sb2, including narrowed bandgap, decreased effective mass, and increased carrier mobility, are summarized. Subsequently, defect-controlled electrical properties in n-type Mg3Sb2-x Bi x are revealed. On one hand, manipulation of intrinsic and extrinsic defects can achieve optimal carrier concentration. On the other hand, Mg vacancies dominate carrier-scattering mechanisms (ionized impurity scattering and grain boundary scattering). Both aspects are discussed for Mg3Sb2-x Bi x thermoelectric materials. Finally, we review the present status of, and future outlook for, these materials in power generation and cooling applications.

20 citations

Journal ArticleDOI
TL;DR: In this paper, the optical properties of cubic boron arsenide (BAs) were measured at room temperature using spectroscopic ellipsometry and transmission and reflection spectroscopy, including complex dielectric function, refractive index, and absorption coefficient in ultraviolet, visible, and near-infrared wavelength range.
Abstract: The ultrahigh thermal conductivity of cubic boron arsenide (BAs) makes it a promising material for next-generation electronics and optoelectronics. Here, we report measured optical properties of BAs crystals, including the complex dielectric function, refractive index, and absorption coefficient in the ultraviolet, visible, and near-infrared wavelength range. The data were collected at room temperature using spectroscopic ellipsometry and transmission and reflection spectroscopy. We further calculated the optical response using density functional theory and many-body perturbation theory, considering quasiparticle and excitonic corrections. The computed values for the direct and indirect bandgaps (4.25 eV and 2.07 eV) agree well with the measured results (4.12 eV and 2.02 eV). Our findings pave the way for using BAs in future electronic and optoelectronic applications that take advantage of its demonstrated ultrahigh thermal conductivity and predicted high ambipolar carrier mobility.

20 citations

Journal ArticleDOI
TL;DR: It is demonstrated that by suitably tuning the Fe-Ni ratio and filler concentration, the synthesized Ni compensated Ce and Nd double filled p-type skutterudites can achieve both a higher power factor and a lower thermal conductivity.
Abstract: We have synthesized Ni compensated Ce and Nd double filled p-type skutterudites CexNdxFe3.7Ni0.3Sb12 with x = 0.35, 0.40, 0.45, and 0.5 by a melting–quenching–annealing method. The samples were made by directly hot pressing the hand ground powder at 650 °C for 5 minutes at a pressure of about 80 MPa. Since Ni has two more electrons than Fe, a lower power factor and a stronger bipolar effect in thermal conductivity are expected at higher temperature. In the experiments, we have demonstrated that by suitably tuning the Fe–Ni ratio and filler concentration, we can achieve both a higher power factor (∼35 μW cm−1 K−2 at 535 °C) and a lower thermal conductivity (∼2.1 W m−1 K−1 at room temperature and ∼2.7 W m−1 K−1 at 535 °C) in Ce0.4Nd0.4Fe3.7Ni0.3Sb12. A peak thermoelectric figure-of-merit of ∼1.1 at 475 °C is achieved in Ce0.4Nd0.4Fe3.7Ni0.3Sb12.

20 citations

Journal ArticleDOI
22 Jul 2022-Science
TL;DR: Yue et al. as discussed by the authors used the optical transient grating technique to measure the ambipolar mobility of cubic boron arsenide (c-BAs) samples at room temperature despite spatial variations.
Abstract: Semiconductors with high thermal conductivity and electron-hole mobility are of great importance for electronic and photonic devices as well as for fundamental studies. Among the ultrahigh–thermal conductivity materials, cubic boron arsenide (c-BAs) is predicted to exhibit simultaneously high electron and hole mobilities of >1000 centimeters squared per volt per second. Using the optical transient grating technique, we experimentally measured thermal conductivity of 1200 watts per meter per kelvin and ambipolar mobility of 1600 centimeters squared per volt per second at the same locations on c-BAs samples at room temperature despite spatial variations. Ab initio calculations show that lowering ionized and neutral impurity concentrations is key to achieving high mobility and high thermal conductivity, respectively. The high ambipolar mobilities combined with the ultrahigh thermal conductivity make c-BAs a promising candidate for next-generation electronics. Description Swift carriers Boron arsenide is a semiconductor with several interesting properties, including a high thermal conductivity. Theoretical calculations also suggest that it has high ambipolar mobility, a measure of the mobility of electrons and holes. Yue et al. and Shin et al. used different types of measurements to observe a high ambipolar mobility in very pure cubic boron arsenide. Shin et al. were able to simultaneously measure the high thermal and electrical transport properties in the same place in their samples. Yue et al. found even higher ambipolar mobility than the theoretical estimates at a few locations. Boron arsenide’s combination of transport properties could make it an attractive semiconductor for various applications. —BG Boron arsenide is a semiconductor with high thermal conductivity and electron-hole mobility.

20 citations

Journal ArticleDOI
TL;DR: In this article, the authors report a fast and simple method that uses much less acid than the state of the art to obtain nanoscale graphene oxide by using the heat released by the reaction.

19 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
02 Aug 2002-Science
TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Abstract: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects. Some of these applications are now realized in products. Others are demonstrated in early to advanced devices, and one, hydrogen storage, is clouded by controversy. Nanotube cost, polydispersity in nanotube type, and limitations in processing and assembly methods are important barriers for some applications of single-walled nanotubes.

9,693 citations