scispace - formally typeset
Search or ask a question
Author

Zhihong. Chen

Bio: Zhihong. Chen is an academic researcher from Oak Ridge National Laboratory. The author has contributed to research in topics: Adsorption & Desorption. The author has an hindex of 2, co-authored 2 publications receiving 1838 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Results indicated that ligand exchange between carboxyl/hydroxyl functional groups of NOM and iron oxide surfaces was the dominant interaction mechanism, especially under acidic or slightly acidic pH conditions.
Abstract: This study was undertaken to elucidate the interaction mechanism between NOM (natural organic matter) and iron oxide surfaces and to develop a predictive model for NOM adsorption and desorption. Results indicated that ligand exchange between carboxyl/hydroxyl functional groups of NOM and iron oxide surfaces was the dominant interaction mechanism, especially under acidic or slightly acidic pH conditions. This conclusion was supported by the measurements of heat of adsorption (microcalorimetry), FTIR and [sup 18]C NMR analysis, and competitive adsorption between NOM and some specifically adsorbed anions. A modified Langmuir model was proposed in which a surface excess-dependent affinity parameter was defined to account for a decreasing adsorption affinity with surface coverage due to the heterogeneity of NOM and adsorbent surfaces. With three adjustable parameters, the model is capable of describing a variety of adsorption isotherms. A hysteresis coefficient, h, was used to describe the hysteretic effect of adsorption reactions that, at h = 0, the reaction is completely reversible, whereas at h = 1, the reaction is completely irreversible. Fitted values of h for NOM desorption on iron oxide surfaces ranged from 0.72 to 0.92, suggesting that the adsorbed NOM was very difficult to be desorbed at a given pH andmore » ionic composition. 54 refs., 8 figs., 3 tabs.« less

1,340 citations

Journal ArticleDOI
TL;DR: In this paper, the competitive and fractional adsorption-desorption of NOM subcomponents were investigated in order to better predict NOM partitioning between the solution and solid phases and, therefore, the transport behavior of the NOM in the subsurface soil environment.

652 citations

Journal ArticleDOI
TL;DR: Results indicated that dietary GLHP supplementation could ameliorate alcohol-mediated oxidative stress damage and provide an affordable dietary intervention strategy to prevent alcohol- mediated hepatocyte damage.
Abstract: The aim of this study was to isolate and identify antioxidative peptide from goose liver hydrolysate (GLHP) for ameliorating oxidative stress damage by alcohol in HHL-5 hepatocytes. In this research, the target antioxidative peptides in GLHP were separated, purified, and identified via a tangential flow ultrafiltration system combined with size exclusion chromatography (SEC), ion exchange chromatography (IEC), reversed-phase liquid chromatography (RP-LC), and LC-MS/MS. The results suggested that the amino acid sequence of the target antioxidative peptide for ameliorating alcohol-mediated oxidative stress damage in HHL-5 hepatocytes was Leu-Pro-Leu-Pro-Phe-Pro (LPLPFP), which had a molecular weight of 683.41 Da, and was derived from NADH-ubiquinone oxidoreductase chain 1 in goose liver. In addition, LPLPFP was confirmed to have a satisfactory stability and maintained high hepatic protective activity in a simulated gastrointestinal digestion. Moreover, the mechanism of LPLPFP prevented against oxidative stress damage in HHL-5 hepatocytes was attributed to inhibiting the production of reactive oxide species (ROS) by upregulating genes expression in the Ahr-NQO1 signal pathway. In conclusion, these results indicated that dietary GLHP supplementation could ameliorate alcohol-mediated oxidative stress damage and provide an affordable dietary intervention strategy to prevent alcohol-mediated hepatocyte damage.

1 citations

Journal ArticleDOI
TL;DR: In this article , a novel thiadiazole-based chloromethyl polystyrene-modified adsorbent, viz. 2, 5-bis-polystyrene, 1, 3, 4-thiadiadiazoles (PS-DMTD), was synthesized using chloromethelioxylamine as the backbone, which can selectively separate palladium from metallurgical wastewater in one-step adsorption process.
Abstract: Selective adsorption of palladium from metallurgical wastewater containing Pt (IV), Rh (III), Ca2+, Cu2+, Fe3+, Ni2+, Pb2+, V3+, and Ti4+ has tremendous economic and environmental benefits. In this paper, a novel thiadiazole-based chloromethyl polystyrene-modified adsorbent, viz. 2, 5-bis-polystyrene-1,3,4-thiadiazole (PS-DMTD), was synthesized using chloromethyl polystyrene as the backbone. The experimental results show that PS-DMTD can selectively separate Pd (II) from metallurgical wastewater in a one-step adsorption process. The calculated saturation adsorption capacity of PS-DMTD for Pd (II) was 176.3 mg/g at 25 °C. The separation factors of βPd (II)/Mn+ (Mn+: Pt (IV), Rh (III), Ca2+, Cu2+, Fe3+, Ni2+, Pb2+, V3+, and Ti4+) were all higher than 1 × 104. FT-IR, XPS, and single-crystal X-ray diffraction showed that the adsorption of Pd (II) to PS-DMTD was primarily through a coordination mechanism. Density functional theory (DFT) calculations revealed that the other base metal ions could not coordinate with the PS-DMTD. Pt (IV) could not be adsorbed to PS-DMTD due to its strong chlorophilicity. Furthermore, Rh (III) existed as a polyhydrate, which inhibited Rh (III) diffusion toward the positively charged absorption sites on the PS-DMTD. These results highlight that PS-DMTD has broad application prospects in the recovery of Pd (II) from metallurgical wastewater.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils is presented.
Abstract: Summary Mechanisms for C stabilization in soils have received much interest recently due to their relevance in the global C cycle. Here we review the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils: (i) selective preservation due to recalcitrance of OM, including plant litter, rhizodeposits, microbial products, humic polymers, and charred OM; (ii) spatial inaccessibility of OM against decomposer organisms due to occlusion, intercalation, hydrophobicity and encapsulation; and (iii) stabilization by interaction with mineral surfaces (Fe-, Al-, Mn-oxides, phyllosilicates) and metal ions. Our goal is to assess the relevance of these mechanisms to the formation of soil OM during different stages of decomposition and under different soil conditions. The view that OM stabilization is dominated by the selective preservation of recalcitrant organic components that accumulate in proportion to their chemical properties can no longer be accepted. In contrast, our analysis of mechanisms shows that: (i) the soil biotic community is able to disintegrate any OM of natural origin; (ii) molecular recalcitrance of OM is relative, rather than absolute; (iii) recalcitrance is only important during early decomposition and in active surface soils; while (iv) during late decomposition and in the subsoil, the relevance of spatial inaccessibility and organo-mineral interactions for SOM stabilization increases. We conclude that major difficulties in the understanding and prediction of SOM dynamics originate from the simultaneous operation of several mechanisms. We discuss knowledge gaps and promising directions of future research.

2,332 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the recent literature about controls on dissolved organic matter (DOM) concentrations and fluxes in so-called "soil degraded organic matter" (SOCOM).
Abstract: Dissolved organic matter (DOM) in soils plays an important role in the biogeochemistry of carbon, nitrogen, and phosphorus, in pedogenesis, and in the transport of pollutants in soils. The aim of this review is to summarize the recent literature about controls on DOM concentrations and fluxes in soi

2,138 citations

Journal ArticleDOI
TL;DR: In this article, the authors synthesize literature concerning the sources, composition, mechanisms of stabilisation and destabilization of soil organic matter (SOM) stored in subsoil horizons.
Abstract: Despite their low carbon (C) content, most subsoil horizons contribute to more than half of the total soil C stocks, and therefore need to be considered in the global C cycle. Until recently, the properties and dynamics of C in deep soils was largely ignored. The aim of this review is to synthesize literature concerning the sources, composition, mechanisms of stabilisation and destabilization of soil organic matter (SOM) stored in subsoil horizons. Organic C input into subsoils occurs in dissolved form (DOC) following preferential flow pathways, as aboveground or root litter and exudates along root channels and/or through bioturbation. The relative importance of these inputs for subsoil C distribution and dynamics still needs to be evaluated. Generally, C in deep soil horizons is characterized by high mean residence times of up to several thousand years. With few exceptions, the carbon-to-nitrogen (C/N) ratio is decreasing with soil depth, while the stable C and N isotope ratios of SOM are increasing, indicating that organic matter (OM) in deep soil horizons is highly processed. Several studies suggest that SOM in subsoils is enriched in microbial-derived C compounds and depleted in energy-rich plant material compared to topsoil SOM. However, the chemical composition of SOM in subsoils is soil-type specific and greatly influenced by pedological processes. Interaction with the mineral phase, in particular amorphous iron (Fe) and aluminum (Al) oxides was reported to be the main stabilization mechanism in acid and near neutral soils. In addition, occlusion within soil aggregates has been identified to account for a great proportion of SOM preserved in subsoils. Laboratory studies have shown that the decomposition of subsoil C with high residence times could be stimulated by addition of labile C. Other mechanisms leading to destabilisation of SOM in subsoils include disruption of the physical structure and nutrient supply to soil microorganisms. One of the most important factors leading to protection of SOM in subsoils may be the spatial separation of SOM, microorganisms and extracellular enzyme activity possibly related to the heterogeneity of C input. As a result of the different processes, stabilized SOM in subsoils is horizontally stratified. In order to better understand deep SOM dynamics and to include them into soil C models, quantitative information about C fluxes resulting from C input, stabilization and destabilization processes at the field scale are necessary.

1,257 citations

Journal ArticleDOI
TL;DR: In this article, Borohydride reduction of an aqueous iron salt in the presence of a support material gives supported zero-valent iron nanoparticles that are 10−30 nm in diameter.
Abstract: Borohydride reduction of an aqueous iron salt in the presence of a support material gives supported zero-valent iron nanoparticles that are 10−30 nm in diameter. The material is stable in air once it has dried and contains 22.6% iron by weight. The supported zero-valent iron nanoparticles (“Ferragels”) rapidly separate and immobilize Cr(VI) and Pb(II) from aqueous solution, reducing the chromium to Cr(III) and the Pb to Pb(0) while oxidizing the Fe to goethite (α-FeOOH). The kinetics of the reduction reactions are complex and include an adsorption phase. About 10% of the iron in the material appears to be located at active surface sites. Once these sites have been saturated, the reduction process continues but at a much lower rate, which is likely limited by mass transfer. Rates of remediation of Cr(VI) and Pb(II) are up to 30 times higher for Ferragels than for iron filings or iron powder on a (Fe) molar basis. Over 2 months, reduction of Cr(VI) was 4.8 times greater for Ferragels than for an equal weigh...

1,137 citations

Journal ArticleDOI
TL;DR: The Fe3O4/HA was able to remove over 99% of Hg(LL) and Pb(ll) and over 95% of Cu(II) and Cd( II) in natural and tap water at optimized pH.
Abstract: Humic acid (HA) coated Fe3O4 nanciparticles (Fe3O4/HA) were developed for the removal of toxic Hg(II), Pb(II), Cd(II), and Cu(II) from water. Fe3O4/HA were prepared by a coprecipitation procedure with cheap and environmentally friendly iron salts and HA. TOC and XPS analysis showed the as-prepared Fe3O4/ HA contains similar to 11% (w/w) of HA which are fractions abundant in O and N-based functional groups. TEM images and laser particle size analysis revealed the Fe3O4/HA (with similar to 10 nm Fe3O4 cores) aggregated in aqueous suspensions to form aggregates with an average hydrodynamic size of similar to 140 nm. With a saturation magnetization of 79.6 emu/g, the Fe3O4/HA can be simply recovered from water with magnetic separations at low magnetic field gradients within a few minutes. Sorption of the heavy metals to Fe3O4/HA reached equilibrium in less than 15 min, and agreed well to the Langmuir adsorption model with maximum adsorption capacities from 46.3 to 97.7 mg/g. The Fe3O4/HA was stable in tap water, natural waters, and acidic/ basic solutions ranging from 0.1 M HCl to 2 M NaOH with low leaching of Fe (<= 3.7%) and HA (<= 5.3%). The Fe3O4/HA was able to remove over 99% of Hg(II) and Pb(II) and over 95% of COO and Cd(II) in natural and tap water at optimized pH. Leaching back of the Fe3O4/HA sorbed heavy metals in water was found to be negligible.

1,016 citations