scispace - formally typeset
Search or ask a question
Author

Zhihong Man

Other affiliations: Deakin University, Monash University, Edith Cowan University  ...read more
Bio: Zhihong Man is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Sliding mode control & Control theory. The author has an hindex of 33, co-authored 223 publications receiving 6380 citations. Previous affiliations of Zhihong Man include Deakin University & Monash University.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents a global non-singular terminal sliding mode controller for rigid manipulators to enable the elimination of the singularity problem associated with conventional terminal slide mode control.

1,826 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the finite-time consensus tracking control for multi-robot systems with input disturbances on the terminal sliding-mode surface and showed that the proposed error function can be modified to achieve relative state deviation between agents.
Abstract: This paper studies the finite-time consensus tracking control for multirobot systems. We prove that finite-time consensus tracking of multiagent systems can be achieved on the terminal sliding-mode surface. Also, we show that the proposed error function can be modified to achieve relative state deviation between agents. These results are then applied to the finite-time consensus tracking control of multirobot systems with input disturbances. Simulation results are presented to validate the analysis.

763 citations

Journal ArticleDOI
TL;DR: In this article, a terminal sliding mode control design scheme for uncertain dynamic systems in the pure-feedback form is presented, which employs a recursive procedure which utilizes a set of switching manifolds to realize finite time convergence.

487 citations

Journal ArticleDOI
TL;DR: A Lyapunov theorem on finite-time instability is proved, which states that almost surely globally asymptotical stability is not equivalent to finite- time stability for some stochastic systems.

386 citations

Journal ArticleDOI
TL;DR: It is proved that, almost surely global finite-time stability of stochastic nonlinear systems in strict-feedback form can be guaranteed by a continuous control law.

251 citations


Cited by
More filters
Journal ArticleDOI
Arie Levant1
TL;DR: In this article, the authors proposed arbitrary-order robust exact differentiators with finite-time convergence, which can be used to keep accurate a given constraint and feature theoretically-infinite-frequency switching.
Abstract: Being a motion on a discontinuity set of a dynamic system, sliding mode is used to keep accurately a given constraint and features theoretically-infinite-frequency switching. Standard sliding modes provide for finite-time convergence, precise keeping of the constraint and robustness with respect to internal and external disturbances. Yet the relative degree of the constraint has to be 1 and a dangerous chattering effect is possible. Higher-order sliding modes preserve or generalize the main properties of the standard sliding mode and remove the above restrictions. r-Sliding mode realization provides for up to the rth order of sliding precision with respect to the sampling interval compared with the first order of the standard sliding mode. Such controllers require higher-order real-time derivatives of the outputs to be available. The lacking information is achieved by means of proposed arbitrary-order robust exact differentiators with finite-time convergence. These differentiators feature optimal asymptot...

2,954 citations

Journal ArticleDOI
08 Jul 2003
TL;DR: A continuous finite-time control scheme for rigid robotic manipulators is proposed using a new form of terminal sliding modes using the Lyapunov stability theory, and theoretical analysis and simulation results show that faster and high-precision tracking performance is obtained.
Abstract: A continuous finite-time control scheme for rigid robotic manipulators is proposed using a new form of terminal sliding modes. The robustness of the controller is established using the Lyapunov stability theory. Theoretical analysis and simulation results show that faster and high-precision tracking performance is obtained compared with the conventional continuous sliding mode control method.

2,040 citations

Journal ArticleDOI
TL;DR: This paper presents a global non-singular terminal sliding mode controller for rigid manipulators to enable the elimination of the singularity problem associated with conventional terminal slide mode control.

1,826 citations

Journal Article
TL;DR: In this paper, two major figures in adaptive control provide a wealth of material for researchers, practitioners, and students to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs.
Abstract: This book, written by two major figures in adaptive control, provides a wealth of material for researchers, practitioners, and students. While some researchers in adaptive control may note the absence of a particular topic, the book‘s scope represents a high-gain instrument. It can be used by designers of control systems to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs. The book is strongly recommended to anyone interested in adaptive control.

1,814 citations

Journal ArticleDOI
TL;DR: A survey on Extreme learning machine (ELM) and its variants, especially on (1) batch learning mode of ELM, (2) fully complex ELm, (3) online sequential ELM; and (4) incremental ELM and (5) ensemble ofELM.
Abstract: Computational intelligence techniques have been used in wide applications. Out of numerous computational intelligence techniques, neural networks and support vector machines (SVMs) have been playing the dominant roles. However, it is known that both neural networks and SVMs face some challenging issues such as: (1) slow learning speed, (2) trivial human intervene, and/or (3) poor computational scalability. Extreme learning machine (ELM) as emergent technology which overcomes some challenges faced by other techniques has recently attracted the attention from more and more researchers. ELM works for generalized single-hidden layer feedforward networks (SLFNs). The essence of ELM is that the hidden layer of SLFNs need not be tuned. Compared with those traditional computational intelligence techniques, ELM provides better generalization performance at a much faster learning speed and with least human intervene. This paper gives a survey on ELM and its variants, especially on (1) batch learning mode of ELM, (2) fully complex ELM, (3) online sequential ELM, (4) incremental ELM, and (5) ensemble of ELM.

1,767 citations