scispace - formally typeset
Search or ask a question
Author

Zhijian Yang

Bio: Zhijian Yang is an academic researcher from Fuzhou University. The author has contributed to research in topics: Radioluminescence & Luminescence. The author has an hindex of 1, co-authored 3 publications receiving 2 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an upconversion nanoparticles (UCNPs)-perovskite nanotransducer is presented for broadband photon detection spanning from X-rays, UV, to NIR.
Abstract: Solution-processed metal-halide perovskites hold great promise in developing next-generation low-cost, high-performance photodetectors. However, the weak absorption of perovskites beyond the near-infrared spectral region posts a stringent limitation on their use for broadband photodetectors. Here, the rational design and synthesis of an upconversion nanoparticles (UCNPs)-perovskite nanotransducer are presented, namely UCNPs@mSiO2 @MAPbX3 (X = Cl, Br, or I), for broadband photon detection spanning from X-rays, UV, to NIR. It is demonstrated that, by in situ crystallization and deliberately tuning the material composition in the lanthanide core and perovskites, the nanotransducers allow for a high stability and show a wide linear response to X-rays of various dose rates, as well as UV/NIR photons of various power densities. The findings provide an opportunity to explore the next-generation broadband photodetectors in the field of high-quality imaging and optoelectronic devices.

38 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of molecular structures on radioluminescence in organic scintillators was investigated. But the relationship between molecular structures and radioluminance was still unclear.
Abstract: There are few reports about purely organic phosphorescence scintillators, and the relationship between molecular structures and radioluminescence in organic scintillators is still unclear. Here, we presented isomerism strategy to study the effect of molecular structures on radioluminescence. The isomers can achieve phosphorescence efficiency of up to 22.8 % by ultraviolet irradiation. Under X-ray irradiation, both m-BA and p-BA show excellent radioluminescence, while o-BA has almost no radioluminescence. Through experimental and theoretical investigation, we found that radioluminescence was not only affected by non-radiation in emissive process, but also highly depended on the material conductivity caused by the different molecular packing. This study not only allows us to clearly understand the relationship between the molecular structures and radioluminescence, but also provides a guidance to rationally design new organic scintillators.

25 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a class of cerium (Ce3+)-sensitized core-shell nanoscintillators that are suitable for achieving flexible X-ray luminescence imaging.

5 citations

Journal ArticleDOI
TL;DR: In this article , a one-pot green synthesis strategy for readily scaling-up preparation of eco-friendly, lanthanide-doped NaBiF 4 nanoscintillators was reported.

3 citations

Journal ArticleDOI
TL;DR: In this paper , a class of tetradecagonal CuI microcrystals were developed as highly stable, eco-friendly, and low-cost scintillators that exhibit intense radioluminescence under X-ray irradiation.
Abstract: Solution-processed scintillators hold great promise in fabrication of low-cost X-ray detectors. However, state of the art of these scintillators is still challenging in their environmental toxicity and instability. In this study, we develop a class of tetradecagonal CuI microcrystals as highly stable, eco-friendly, and low-cost scintillators that exhibit intense radioluminescence under X-ray irradiation. The red broadband emission is attributed to the recombination of self-trapped excitons in CuI microcrystals. We demonstrate the incorporation of such CuI microscintillator into a flexible polymer to fabricate an X-ray detector for high-resolution imaging with a spatial resolution up to 20 line pairs per millimeter (lp mm−1), which enables sharp image effects by attaching the flexible imaging detectors onto curved object surfaces.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , intermolecular halogen bonding (CN…Br) was introduced into the host-guest RTP system, which promoted intersystem crossing and stabilized the triplet excitons, thus helping to achieve strong phosphorescence emission.
Abstract: Monotonous luminescence has always been a major factor limiting the application of organic room-temperature phosphorescence (RTP) materials. Enhancing and regulating the intermolecular interactions between the host and guest is an effective strategy to achieve excellent phosphorescence performance. In this study, intermolecular halogen bonding (CN…Br) was introduced into the host-guest RTP system. The interaction promoted intersystem crossing and stabilized the triplet excitons, thus helping to achieve strong phosphorescence emission. In addition, the weak intermolecular interaction of halogen bonding is sensitive to external stimuli such as heat, mechanical force, and X-rays. Therefore, the triplet excitons were easily quenched and colorimetric multi-stimuli responsive behaviors were realized, which greatly enriched the luminescence functionality of the RTP materials. This method provides a new platform for the future design of responsive RTP materials based on weak intermolecular interactions between the host and guest molecules.

52 citations

Journal ArticleDOI
TL;DR: In this article , heavy atoms (Cl, Br and I) were introduced into thermally activated delayed fluorescence (TADF) chromophores to significantly increase their X-ray absorption cross-section and maintaining their unique TADF properties and high photoluminescence quantum yield.
Abstract: The architectural design and fabrication of low-cost and reliable organic X-ray imaging scintillators with high light yield, ultralow detection limits and excellent imaging resolution is becoming one of the most attractive research directions for chemists, materials scientists, physicists and engineers due to the devices’ promising scientific and applied technological implications. However, the optimal balance among X-ray absorption capability, exciton utilization efficiency and photoluminescence quantum yield of organic scintillation materials is extremely difficult to achieve because of several competitive non-radiative processes, including intersystem crossing and internal conversion. Here we introduced heavy atoms (Cl, Br and I) into thermally activated delayed fluorescence (TADF) chromophores to significantly increase their X-ray absorption cross-section and maintaining their unique TADF properties and high photoluminescence quantum yield. The X-ray imaging screens fabricated using TADF-Br chromophores exhibited highly improved X-ray sensitivity and imaging resolution compared with the TADF-H counterpart. More importantly, the high X-ray imaging resolution of >18.0 line pairs per millimetre achieved from the TADF-Br screen exceeds most reported organic and conventional inorganic scintillators. This study could help revive research on organic X-ray imaging scintillators and pave the way towards exciting applications for radiology and security screening. Heavy atoms like Cl, Br and I introduced into thermally activated delayed fluorescence chromophores can increase the X-ray absorption cross-section. Light yield of ~20,000 photons MeV–1, detection limit of 45.5 nGy s−1 and imaging resolution of >18.0 line pairs per millimetre is demonstrated.

32 citations

Journal ArticleDOI
TL;DR: In this paper , a facile strategy to achieve the X-ray-excited organic phosphorescent scintillation from amorphous copolymers through the copolymerization of the bromine-substituted chromophores and acrylic acid was presented.
Abstract: Abstract Scintillators that exhibit X-ray-excited luminescence have great potential in radiation detection, X-ray imaging, radiotherapy, and non-destructive testing. However, most reported scintillators are limited to inorganic or organic crystal materials, which have some obstacles in repeatability and processability. Here we present a facile strategy to achieve the X-ray-excited organic phosphorescent scintillation from amorphous copolymers through the copolymerization of the bromine-substituted chromophores and acrylic acid. These polymeric scintillators exhibit efficient X-ray responsibility and decent phosphorescent quantum yield up to 51.4% under ambient conditions. The universality of the design principle was further confirmed by a series of copolymers with multi-color radioluminescence ranging from green to orange-red. Moreover, we demonstrated their potential application in X-ray radiography. This finding not only outlines a feasible principle to develop X-ray responsive phosphorescent polymers, but also expands the potential applications of polymer materials with phosphorescence features.

26 citations

Journal ArticleDOI
TL;DR: In this article , a more convenient strategy for X-ray-induced photodynamic therapy based on a class of organic phosphorescence nanoscintillators, that act in a dual capacity as scintillator and photosensitizers, was reported.
Abstract: X-ray-induced photodynamic therapy utilizes penetrating X-rays to activate reactive oxygen species in deep tissues for cancer treatment, which combines the advantages of photodynamic therapy and radiotherapy. Conventional therapy usually requires heavy-metal-containing inorganic scintillators and organic photosensitizers to generate singlet oxygen. Here, we report a more convenient strategy for X-ray-induced photodynamic therapy based on a class of organic phosphorescence nanoscintillators, that act in a dual capacity as scintillators and photosensitizers. The resulting low dose of 0.4 Gy and negligible adverse effects demonstrate the great potential for the treatment of deep tumours. These findings provide an optional route that leverages the optical properties of purely organic scintillators for deep-tissue photodynamic therapy. Furthermore, these organic nanoscintillators offer an opportunity to expand applications in the fields of biomaterials and nanobiotechnology.

23 citations

Journal ArticleDOI
TL;DR: In this paper , a review of advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions, is presented.
Abstract: The attractive features of lanthanide-doped upconversion luminescence (UCL), such as high photostability, nonphotobleaching or photoblinking, and large anti-Stokes shift, have shown great potentials in life science, information technology, and energy materials. Therefore, UCL modulation is highly demanded toward expected emission wavelength, lifetime, and relative intensity in order to satisfy stringent requirements raised from a wide variety of areas. Unfortunately, the majority of efforts have been devoted to either simple codoping of multiple activators or variation of hosts, while very little attention has been paid to the critical role that sensitizers have been playing. In fact, different sensitizers possess different excitation wavelengths and different energy transfer pathways (to different activators), which will lead to different UCL features. Thus, rational design of sensitizers shall provide extra opportunities for UCL tuning, particularly from the excitation side. In this review, we specifically focus on advances in sensitizers, including the current status, working mechanisms, design principles, as well as future challenges and endeavor directions.

20 citations