scispace - formally typeset
Search or ask a question
Author

Zhijun Lin

Bio: Zhijun Lin is an academic researcher from Los Alamos National Laboratory. The author has contributed to research in topics: Ceramic & Bulk modulus. The author has an hindex of 35, co-authored 65 publications receiving 3287 citations. Previous affiliations of Zhijun Lin include Chinese Academy of Sciences & Carnegie Institution for Science.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, high-temperature oxidation and hot corrosion behaviors of Cr2AlC were investigated at 800-1300 degrees C in air, which is 400 degrees C higher than other ternary transition metal aluminum carbides.

273 citations

Journal ArticleDOI
Zhijun Lin1, M.J. Zhuo1, Yanchun Zhou1, M.S. Li1, Jinyue Wang1 
TL;DR: In this article, high-resolution imaging reveals that the stacking sequence of Ti and Al atoms along the [0 0 0 1]Ti2AlC direction is ABABAB.

167 citations

Journal ArticleDOI
TL;DR: In this article, a number of novel transition metal nitrides including hexagonal and rhombohedral W2N3 and cubic W3N4 were synthesized using solid-state ion exchange and nitrogen degassing under pressure.
Abstract: Among transition metal nitrides, tungsten nitrides possess unique and/or superior chemical, mechanical, and thermal properties. Preparation of these nitrides, however, is challenging because the incorporation of nitrogen into tungsten lattice is thermodynamically unfavorable at atmospheric pressure. To date, most materials in the W–N system are in the form of thin films produced by nonequilibrium processes and are often poorly crystallized, which severely limits their use in diverse technological applications. Here we report synthesis of tungsten nitrides through new approaches involving solid-state ion exchange and nitrogen degassing under pressure. We unveil a number of novel nitrides including hexagonal and rhombohedral W2N3. The final products are phase-pure and well-crystallized in bulk forms. For hexagonal W2N3, hexagonal WN, and cubic W3N4, they exhibit elastic properties rivaling or even exceeding cubic-BN. All four nitrides are prepared at a moderate pressure of 5 GPa, the lowest among high-press...

144 citations

Journal ArticleDOI
TL;DR: It is shown that the long-believed transition-metal tetraborides of tungsten and molybdenum are in fact triborides (TB(3), and this finding challenges the previously proposed origin of superhardness of these compounds and the predictability of the generally used hardness model.
Abstract: Using density functional theory, we show that the long-believed transition-metal tetraborides (TB(4)) of tungsten and molybdenum are in fact triborides (TB(3)). This finding is supported by thermodynamic, mechanical, and phonon instabilities of TB(4), and it challenges the previously proposed origin of superhardness of these compounds and the predictability of the generally used hardness model. Theoretical calculations for the newly identified stable TB(3) structure correctly reproduce their structural and mechanical properties, as well as the experimental x-ray diffraction pattern. However, the relatively low shear moduli and strengths suggest that TB(3) cannot be intrinsically stronger than c-BN. The origin of the lattice instability of TB(3) under large shear strain that occurs at the atomic level during plastic deformation can be attributed to valence charge depletion between boron and metal atoms, which enables easy sliding of boron layers between the metal ones.

136 citations

Journal ArticleDOI
TL;DR: The phase instability beyond a critical Al content was attributed to occupation of the Ti-Al anti-bonding orbital, which reduces the coupling strength between Ti2C slab and Al atomic plane.

127 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist.
Abstract: The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research. More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist. Highly electrically conductive MXenes show promise in electrical energy storage, electromagnetic interference shielding, electrocatalysis, plasmonics and other applications.

4,745 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the intrinsic correlation between hardness and elasticity of materials correctly predicts Vickers hardness for a wide variety of crystalline materials as well as bulk metallic glasses (BMGs).

1,632 citations

Journal ArticleDOI
TL;DR: A detailed review of the superconductivity of FePnictide and chalcogenide (FePn/Ch) superconductors can be found in this paper.
Abstract: Kamihara and coworkers' report of superconductivity at ${T}_{c}=26\text{ }\text{ }\mathrm{K}$ in fluorine-doped LaFeAsO inspired a worldwide effort to understand the nature of the superconductivity in this new class of compounds. These iron pnictide and chalcogenide (FePn/Ch) superconductors have Fe electrons at the Fermi surface, plus an unusual Fermiology that can change rapidly with doping, which lead to normal and superconducting state properties very different from those in standard electron-phonon coupled ``conventional'' superconductors. Clearly, superconductivity and magnetism or magnetic fluctuations are intimately related in the FePn/Ch, and even coexist in some. Open questions, including the superconducting nodal structure in a number of compounds, abound and are often dependent on improved sample quality for their solution. With ${T}_{c}$ values up to 56 K, the six distinct Fe-containing superconducting structures exhibit complex but often comparable behaviors. The search for correlations and explanations in this fascinating field of research would benefit from an organization of the large, seemingly disparate data set. This review provides an overview, using numerous references, with a focus on the materials and their superconductivity.

1,349 citations

Journal ArticleDOI
TL;DR: In this Review, recent progress in the synthesis and electrochemical application of transition metal carbides and nitrides for energy storage and conversion is summarized andvantages and benefits of nanostructuring are highlighted.
Abstract: High-performance electrode materials are the key to advances in the areas of energy conversion and storage (e.g., fuel cells and batteries). In this Review, recent progress in the synthesis and electrochemical application of transition metal carbides (TMCs) and nitrides (TMNs) for energy storage and conversion is summarized. Their electrochemical properties in Li-ion and Na-ion batteries as well as in supercapacitors, and electrocatalytic reactions (oxygen evolution and reduction reactions, and hydrogen evolution reaction) are discussed in association with their crystal structure/morphology/composition. Advantages and benefits of nanostructuring (e.g., 2D MXenes) are highlighted. Prospects of future research trends in rational design of high-performance TMCs and TMNs electrodes are provided at the end.

971 citations

Journal ArticleDOI
TL;DR: A critical review of the M(n + 1)AX(n) phases from a materials science perspective is given in this article, where the authors discuss the potential for low-temperature synthesis, which is essential for deposition of MAX phases onto technologically important substrates.

905 citations