scispace - formally typeset
Search or ask a question
Author

Zhijun Wu

Bio: Zhijun Wu is an academic researcher from Peking University. The author has contributed to research in topics: Aerosol & Particle. The author has an hindex of 45, co-authored 148 publications receiving 6833 citations. Previous affiliations of Zhijun Wu include Leibniz Institute for Neurobiology & Chinese Ministry of Education.
Topics: Aerosol, Particle, Particle number, Haze, Medicine


Papers
More filters
Journal ArticleDOI
TL;DR: A periodic cycle of PM episodes in Beijing is demonstrated that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles.
Abstract: As the world’s second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China.

1,291 citations

Journal ArticleDOI
TL;DR: In this article, a new particle formation event in a highly polluted air mass at a regional site south of the megacity Beijing and its impact on the abundance and properties of cloud condensation nuclei (CCN) was investigated.
Abstract: [1] This study was part of the international field measurement Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006). We investigated a new particle formation event in a highly polluted air mass at a regional site south of the megacity Beijing and its impact on the abundance and properties of cloud condensation nuclei (CCN). During the 1-month observation, particle nucleation followed by significant particle growth on a regional scale was observed frequently (~30%), and we chose 23 August 2006 as a representative case study. Secondary aerosol mass was produced continuously, with sulfate, ammonium, and organics as major components. The aerosol mass growth rate was on average 19 μg m -3 h -1 during the late hours of the day. This growth rate was observed several times during the 1-month intensive measurements. The nucleation mode grew very quickly into the size range of CCN, and the CCN size distribution was dominated by the growing nucleation mode (up to 80% of the total CCN number concentration) and not as usual by the accumulation mode. At water vapor supersaturations of 0.07-0.86%, the CCN number concentrations reached maximum values of 4000-19,000 cm -3 only 6-14 h after the nucleation event. During particle formation and growth, the effective hygroscopicity parameter κ increased from about 0.1-0.3 to 0.35-0.5 for particles with diameters of 40-90 nm, but it remained nearly constant at ~0.45 for particles with diameters of ~190 nm. This result is consistent with aerosol chemical composition data, showing a pronounced increase of sulfate.

369 citations

01 Dec 2009
TL;DR: In this paper, a new particle formation event in a highly polluted air mass at a regional site south of the megacity Beijing and its impact on the abundance and properties of cloud condensation nuclei (CCN) was investigated.
Abstract: [1] This study was part of the international field measurement Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing-2006). We investigated a new particle formation event in a highly polluted air mass at a regional site south of the megacity Beijing and its impact on the abundance and properties of cloud condensation nuclei (CCN). During the 1-month observation, particle nucleation followed by significant particle growth on a regional scale was observed frequently (~30%), and we chose 23 August 2006 as a representative case study. Secondary aerosol mass was produced continuously, with sulfate, ammonium, and organics as major components. The aerosol mass growth rate was on average 19 μg m -3 h -1 during the late hours of the day. This growth rate was observed several times during the 1-month intensive measurements. The nucleation mode grew very quickly into the size range of CCN, and the CCN size distribution was dominated by the growing nucleation mode (up to 80% of the total CCN number concentration) and not as usual by the accumulation mode. At water vapor supersaturations of 0.07-0.86%, the CCN number concentrations reached maximum values of 4000-19,000 cm -3 only 6-14 h after the nucleation event. During particle formation and growth, the effective hygroscopicity parameter κ increased from about 0.1-0.3 to 0.35-0.5 for particles with diameters of 40-90 nm, but it remained nearly constant at ~0.45 for particles with diameters of ~190 nm. This result is consistent with aerosol chemical composition data, showing a pronounced increase of sulfate.

324 citations

Journal ArticleDOI
TL;DR: In this paper, particle number size distributions between 3 nm and 10 μm were measured in Beijing, China and the formation rate range was from 3.3 to 81.4 cm−3 s−1.
Abstract: [1] Particle number size distributions between 3 nm and 10 μm were measured in Beijing, China. New particle formation events were observed on around 40% of the measurement days from March 2004 to February 2005 and were generally observed under low relative humidity and sunny conditions. Though occurring during all seasons, new particle formation events had highest frequency in spring and lowest frequency in summer. Events were classified as “clean” or “polluted” groups mainly according to the condensational sink and the local wind. The formation rate range was from 3.3 to 81.4 cm−3 s−1. The growth rate varied from 0.1 to 11.2 nm h−1. The seasonal variation of condensable vapor concentration showed the highest values during summer months due to enhanced photochemical and biological activities as well as stagnant air masses preventing exchange with cleaner air.

280 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the seasonal, weekly and diurnal variations and dependencies on meteorological parameters in Beijing, China since March 2004, and found that the particle number in Beijing is generally higher than that in cities of developed countries, especially for the accumulation mode particles.

271 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the current state of understanding of the air pollution problems in China's mega cities and identify the immediate challenges to understanding and controlling air pollution in these densely populated areas.

2,164 citations

Journal Article
TL;DR: In this paper, an inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment, in which emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia.
Abstract: [i] An inventory of air pollutant emissions in Asia in the year 2000 is developed to support atmospheric modeling and analysis of observations taken during the TRACE-P experiment funded by the National Aeronautics and Space Administration (NASA) and the ACE-Asia experiment funded by the National Science Foundation (NSF) and the National Oceanic and Atmospheric Administration (NOAA). Emissions are estimated for all major anthropogenic sources, including biomass burning, in 64 regions of Asia. We estimate total Asian emissions as follows: 34.3 Tg SO 2 , 26.8 Tg NO x , 9870 Tg CO 2 , 279 Tg CO, 107 Tg CH 4 , 52.2 Tg NMVOC, 2.54 Tg black carbon (BC), 10.4 Tg organic carbon (OC), and 27.5 Tg NH 3 . In addition, NMVOC are speciated into 19 subcategories according to functional groups and reactivity. Thus we are able to identify the major source regions and types for many of the significant gaseous and particle emissions that influence pollutant concentrations in the vicinity of the TRACE-P and ACE-Asia field measurements. Emissions in China dominate the signature of pollutant concentrations in this region, so special emphasis has been placed on the development of emission estimates for China. China's emissions are determined to be as follows: 20.4 Tg SO 2 , 11.4 Tg NO x , 3820 Tg CO 2 , 116 Tg CO, 38.4 Tg CH 4 , 17.4 Tg NMVOC, 1.05 Tg BC, 3.4 Tg OC, and 13.6 Tg NH 3 . Emissions are gridded at a variety of spatial resolutions from 1° × 1° to 30 s x 30 s, using the exact locations of large point sources and surrogate GIS distributions of urban and rural population, road networks, landcover, ship lanes, etc. The gridded emission estimates have been used as inputs to atmospheric simulation models and have proven to be generally robust in comparison with field observations, though there is reason to think that emissions of CO and possibly BC may be underestimated. Monthly emission estimates for China are developed for each species to aid TRACE-P and ACE-Asia data interpretation. During the observation period of March/ April, emissions are roughly at their average values (one twelfth of annual). Uncertainties in the emission estimates, measured as 95% confidence intervals, range from a low of ±16% for SO 2 to a high of ±450% for OC.

1,828 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the role of chemical composition and particle size in cloud condensation nucleation processes, and the role that the chemical composition plays in the process of cloud droplet and ice nucleation.

1,347 citations

Journal ArticleDOI
TL;DR: A periodic cycle of PM episodes in Beijing is demonstrated that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles.
Abstract: As the world’s second largest economy, China has experienced severe haze pollution, with fine particulate matter (PM) recently reaching unprecedentedly high levels across many cities, and an understanding of the PM formation mechanism is critical in the development of efficient mediation policies to minimize its regional to global impacts. We demonstrate a periodic cycle of PM episodes in Beijing that is governed by meteorological conditions and characterized by two distinct aerosol formation processes of nucleation and growth, but with a small contribution from primary emissions and regional transport of particles. Nucleation consistently precedes a polluted period, producing a high number concentration of nano-sized particles under clean conditions. Accumulation of the particle mass concentration exceeding several hundred micrograms per cubic meter is accompanied by a continuous size growth from the nucleation-mode particles over multiple days to yield numerous larger particles, distinctive from the aerosol formation typically observed in other regions worldwide. The particle compositions in Beijing, on the other hand, exhibit a similarity to those commonly measured in many global areas, consistent with the chemical constituents dominated by secondary aerosol formation. Our results highlight that regulatory controls of gaseous emissions for volatile organic compounds and nitrogen oxides from local transportation and sulfur dioxide from regional industrial sources represent the key steps to reduce the urban PM level in China.

1,291 citations

Journal ArticleDOI
TL;DR: The results explain the outstanding sulfur problem during the historic London Fog formation and elucidate the chemical mechanism of severe haze in China, and suggest that effective haze mitigation is achievable by intervening in the sulfate formation process with NH3 and NO2 emission control measures.
Abstract: Sulfate aerosols exert profound impacts on human and ecosystem health, weather, and climate, but their formation mechanism remains uncertain. Atmospheric models consistently underpredict sulfate levels under diverse environmental conditions. From atmospheric measurements in two Chinese megacities and complementary laboratory experiments, we show that the aqueous oxidation of SO2 by NO2 is key to efficient sulfate formation but is only feasible under two atmospheric conditions: on fine aerosols with high relative humidity and NH3 neutralization or under cloud conditions. Under polluted environments, this SO2 oxidation process leads to large sulfate production rates and promotes formation of nitrate and organic matter on aqueous particles, exacerbating severe haze development. Effective haze mitigation is achievable by intervening in the sulfate formation process with enforced NH3 and NO2 control measures. In addition to explaining the polluted episodes currently occurring in China and during the 1952 London Fog, this sulfate production mechanism is widespread, and our results suggest a way to tackle this growing problem in China and much of the developing world.

1,027 citations