scispace - formally typeset
Search or ask a question
Author

Zhiming Kuang

Bio: Zhiming Kuang is an academic researcher from Harvard University. The author has contributed to research in topics: Convection & Madden–Julian oscillation. The author has an hindex of 36, co-authored 97 publications receiving 4885 citations. Previous affiliations of Zhiming Kuang include California Institute of Technology & University of Washington.


Papers
More filters
Journal ArticleDOI
14 Jan 2010-Nature
TL;DR: In this paper, an atmospheric model is used to show that flattening of the Tibetan plateau has little effect on the monsoon, provided that the narrow orography of the Himalayas and adjacent mountain ranges is preserved.
Abstract: Heat emitted from the Tibetan plateau as dry heat and water vapour has long been assumed to be the main driver of the South Asian summer monsoon, but new work suggests that in fact it is the neighbouring mountains that are the major influence. William Boos and Zhiming Kuang use an atmospheric model to show that flattening the Tibetan plateau has little effect on the monsoon, so long as the Himalayas and surrounding mountain ranges remain. The plateau does boost rainfall locally along its southern edge, but it is the build-up of hot, moist air over India, insulated from colder, drier air by the Himalayas, that drives large-scale monsoon circulation. The elevation of the Tibetan plateau is thought to cause its surface to serve as a heat source that drives the South Asian summer monsoon, potentially coupling uplift of the plateau to climate changes on geologic timescales. Here, however, an atmospheric model is used to show that flattening of the Tibetan plateau has little effect on the monsoon, provided that the narrow orography of the Himalayas and adjacent mountain ranges is preserved. The Tibetan plateau, like any landmass, emits energy into the atmosphere in the form of dry heat and water vapour, but its mean surface elevation is more than 5 km above sea level. This elevation is widely held to cause the plateau to serve as a heat source that drives the South Asian summer monsoon, potentially coupling uplift of the plateau to climate changes on geologic timescales1,2,3,4,5. Observations of the present climate, however, do not clearly establish the Tibetan plateau as the dominant thermal forcing in the region: peak upper-tropospheric temperatures during boreal summer are located over continental India, south of the plateau. Here we show that, although Tibetan plateau heating locally enhances rainfall along its southern edge in an atmospheric model, the large-scale South Asian summer monsoon circulation is otherwise unaffected by removal of the plateau, provided that the narrow orography of the Himalayas and adjacent mountain ranges is preserved. Additional observational and model results suggest that these mountains produce a strong monsoon by insulating warm, moist air over continental India from the cold and dry extratropics. These results call for both a reinterpretation of how South Asian climate may have responded to orographic uplift, and a re-evaluation of how this climate may respond to modified land surface and radiative forcings in coming decades.

685 citations

Journal ArticleDOI
TL;DR: In this article, the authors illustrate the shortcomings evident in model representations of cloud ice through a comparison of the simulations assessed in the Intergovernmental Panel on Climate Change Fourth Assessment Report, briefly discuss the range of global observational resources that are available, and describe the essential components of the model parameterizations that characterize their "cloud" ice and related fields.
Abstract: [1] Present-day shortcomings in the representation of upper tropospheric ice clouds in general circulation models (GCMs) lead to errors in weather and climate forecasts as well as account for a source of uncertainty in climate change projections. An ongoing challenge in rectifying these shortcomings has been the availability of adequate, high-quality, global observations targeting ice clouds and related precipitating hydrometeors. In addition, the inadequacy of the modeled physics and the often disjointed nature between model representation and the characteristics of the retrieved/observed values have hampered GCM development and validation efforts from making effective use of the measurements that have been available. Thus, even though parameterizations in GCMs accounting for cloud ice processes have, in some cases, become more sophisticated in recent years, this development has largely occurred independently of the global-scale measurements. With the relatively recent addition of satellite-derived products from Aura/Microwave Limb Sounder (MLS) and CloudSat, there are now considerably more resources with new and unique capabilities to evaluate GCMs. In this article, we illustrate the shortcomings evident in model representations of cloud ice through a comparison of the simulations assessed in the Intergovernmental Panel on Climate Change Fourth Assessment Report, briefly discuss the range of global observational resources that are available, and describe the essential components of the model parameterizations that characterize their "cloud" ice and related fields. Using this information as background, we (1) discuss some of the main considerations and cautions that must be taken into account in making model-data comparisons related to cloud ice, (2) illustrate present progress and uncertainties in applying satellite cloud ice (namely from MLS and CloudSat) to model diagnosis, (3) show some indications of model improvements, and finally (4) discuss a number of remaining questions and suggestions for pathways forward.

351 citations

Journal ArticleDOI
TL;DR: In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes.
Abstract: In this paper, an idealized, high-resolution simulation of a gradually forced transition from shallow, nonprecipitating to deep, precipitating cumulus convection is described; how the cloud and transport statistics evolve as the convection deepens is explored; and the collected statistics are used to evaluate assumptions in current cumulus schemes. The statistical analysis methodologies that are used do not require tracing the history of individual clouds or air parcels; instead they rely on probing the ensemble characteristics of cumulus convection in the large model dataset. They appear to be an attractive way for analyzing outputs from cloud-resolving numerical experiments. Throughout the simulation, it is found that 1) the initial thermodynamic properties of the updrafts at the cloud base have rather tight distributions; 2) contrary to the assumption made in many cumulus schemes, nearly undiluted air parcels are too infrequent to be relevant to any stage of the simulated convection; and 3) a simple model with a spectrum of entraining plumes appears to reproduce most features of the cloudy updrafts, but significantly overpredicts the mass flux as the updrafts approach their levels of zero buoyancy. A buoyancy-sorting model was suggested as a potential remedy. The organized circulations of cold pools seem to create clouds with larger-sized bases and may correspondingly contribute to their smaller lateral entrainment rates. Our results do not support a mass-flux closure based solely on convective available potential energy (CAPE), and are in general agreement with a convective inhibition (CIN)-based closure. The general similarity in the ensemble characteristics of shallow and deep convection and the continuous evolution of the thermodynamic structure during the transition provide justification for developing a single unified cumulus parameterization that encompasses both shallow and deep convection.

252 citations

Journal ArticleDOI
TL;DR: In this article, a Madden-Julian oscillation (MJO)-like spectral feature is observed in the time-space spectra of precipitation and column-integrated moist static energy (MSE) for a zonally symmetric aquaplanet simulated with Superparameterized Community Atmospheric Model (SPCAM).
Abstract: A Madden–Julian oscillation (MJO)-like spectral feature is observed in the time–space spectra of precipitation and column-integrated moist static energy (MSE) for a zonally symmetric aquaplanet simulated with Superparameterized Community Atmospheric Model (SPCAM). This disturbance possesses the basic structural and propagation features of the observed MJO.To explore the processes involved in propagation and maintenance of this disturbance, this study analyzes the MSE budget of the disturbance. The authors observe that the disturbances propagate both eastward and poleward. The column-integrated longwave heating is the only significant source of column-integrated MSE acting to maintain the MJO-like anomaly balanced against the combination of column-integrated horizontal and vertical advection of MSE and latent heat flux. Eastward propagation of the MJO-like disturbance is associated with MSE generated by both column integrated horizontal and vertical advection of MSE, with the column longwave heatin...

232 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
TL;DR: The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity, and molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth.
Abstract: This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high-resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.

7,638 citations

Journal ArticleDOI
TL;DR: A new version of the atmosphere-ocean general circulation model cooperatively produced by the Japanese research community, known as the Model for Interdisciplinary Research on Climate (MIROC), has recently been developed.
Abstract: A new version of the atmosphere–ocean general circulation model cooperatively produced by the Japanese research community, known as the Model for Interdisciplinary Research on Climate (MIROC), has recently been developed. A century-long control experiment was performed using the new version (MIROC5) with the standard resolution of the T85 atmosphere and 1° ocean models. The climatological mean state and variability are then compared with observations and those in a previous version (MIROC3.2) with two different resolutions (medres, hires), coarser and finer than the resolution of MIROC5. A few aspects of the mean fields in MIROC5 are similar to or slightly worse than MIROC3.2, but otherwise the climatological features are considerably better. In particular, improvements are found in precipitation, zonal mean atmospheric fields, equatorial ocean subsurface fields, and the simulation of El Nino–Southern Oscillation. The difference between MIROC5 and the previous model is larger than that between th...

1,148 citations

07 Jan 2013
TL;DR: In this article, the authors analyzed daily fields of 500-hPa heights from the National Centers for Environmental Prediction Reanalysis over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with Arctic amplification and the relaxation of poleward thickness gradients.
Abstract: [1] Arctic amplification (AA) – the observed enhanced warming in high northern latitudes relative to the northern hemisphere – is evident in lower-tropospheric temperatures and in 1000-to-500 hPa thicknesses. Daily fields of 500 hPa heights from the National Centers for Environmental Prediction Reanalysis are analyzed over N. America and the N. Atlantic to assess changes in north-south (Rossby) wave characteristics associated with AA and the relaxation of poleward thickness gradients. Two effects are identified that each contribute to a slower eastward progression of Rossby waves in the upper-level flow: 1) weakened zonal winds, and 2) increased wave amplitude. These effects are particularly evident in autumn and winter consistent with sea-ice loss, but are also apparent in summer, possibly related to earlier snow melt on high-latitude land. Slower progression of upper-level waves would cause associated weather patterns in mid-latitudes to be more persistent, which may lead to an increased probability of extreme weather events that result from prolonged conditions, such as drought, flooding, cold spells, and heat waves.

1,048 citations