scispace - formally typeset
Search or ask a question
Author

Zhiqi Liu

Bio: Zhiqi Liu is an academic researcher from Beihang University. The author has contributed to research in topics: Spintronics & Antiferromagnetism. The author has an hindex of 29, co-authored 98 publications receiving 3329 citations. Previous affiliations of Zhiqi Liu include Chinese Academy of Sciences & University of Pittsburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: An EPS state is reported at the LaAlO(3)/SrTiO (3) interface, where the interface charges are separated into regions of a quasi-two-dimensional electron gas, a ferromagnetic phase, which persists above room temperature, and a diamagnetic/paramagnetic phase below 60 K.
Abstract: Interface effects in complex oxides could have interesting technological applications. Ariando et al. demonstrate electronic phase separation and rich physics at a complex oxide interface between the two non-magnetic insulators LaAlO3 and SrTiO3.

352 citations

Journal ArticleDOI
22 Sep 2016-Nature
TL;DR: The results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.
Abstract: A single-phase multiferroic material is constructed, in which ferroelectricity and strong magnetic ordering are coupled near room temperature, enabling direct electric-field control of magnetism. Materials that exhibit coupled ferroelectric and magnetic ordering are attractive candidates for use in future memory devices, but such materials are rare and typically exhibit their desirable properties only at low temperatures. Julia Mundy and colleagues now describe and successfully implement a strategy for building artificial layered materials in which ferroelectricity and magnetism are both present, and coupled near room temperature. Materials that exhibit simultaneous order in their electric and magnetic ground states hold promise for use in next-generation memory devices in which electric fields control magnetism1,2. Such materials are exceedingly rare, however, owing to competing requirements for displacive ferroelectricity and magnetism3. Despite the recent identification of several new multiferroic materials and magnetoelectric coupling mechanisms4,5,6,7,8,9,10,11,12,13,14,15, known single-phase multiferroics remain limited by antiferromagnetic or weak ferromagnetic alignments, by a lack of coupling between the order parameters, or by having properties that emerge only well below room temperature, precluding device applications2. Here we present a methodology for constructing single-phase multiferroic materials in which ferroelectricity and strong magnetic ordering are coupled near room temperature. Starting with hexagonal LuFeO3—the geometric ferroelectric with the greatest known planar rumpling16—we introduce individual monolayers of FeO during growth to construct formula-unit-thick syntactic layers of ferrimagnetic LuFe2O4 (refs 17, 18) within the LuFeO3 matrix, that is, (LuFeO3)m/(LuFe2O4)1 superlattices. The severe rumpling imposed by the neighbouring LuFeO3 drives the ferrimagnetic LuFe2O4 into a simultaneously ferroelectric state, while also reducing the LuFe2O4 spin frustration. This increases the magnetic transition temperature substantially—from 240 kelvin for LuFe2O4 (ref. 18) to 281 kelvin for (LuFeO3)9/(LuFe2O4)1. Moreover, the ferroelectric order couples to the ferrimagnetism, enabling direct electric-field control of magnetism at 200 kelvin. Our results demonstrate a design methodology for creating higher-temperature magnetoelectric multiferroics by exploiting a combination of geometric frustration, lattice distortions and epitaxial engineering.

284 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive comparison of (100)-oriented SrTiO3 substrates with crystalline and amorphous overlayers of LaAlO3 of different thicknesses prepared under different oxygen pressures was conducted.
Abstract: The relative importance of atomic defects and electron transfer in explaining conductivity at the crystalline LaAlO3/SrTiO3 interface has been a topic of debate. Metallic interfaces with similar electronic properties produced by amorphous oxide overlayers on SrTiO3 have called in question the original polarization catastrophe model. We resolve the issue by a comprehensive comparison of (100)-oriented SrTiO3 substrates with crystalline and amorphous overlayers of LaAlO3 of different thicknesses prepared under different oxygen pressures. For both types of overlayers, there is a critical thickness for the appearance of conductivity, but its value is always 4 unit cells (around 1.6 nm) for the oxygen-annealed crystalline case, whereas in the amorphous case, the critical thickness could be varied in the range 0.5 to 6 nm according to the deposition conditions. Subsequent ion milling of the overlayer restores the insulating state for the oxygen-annealed crystalline heterostructures but not for the amorphous ones. Oxygen post-annealing removes the oxygen vacancies, and the interfaces become insulating in the amorphous case. However, the interfaces with a crystalline overlayer remain conducting with reduced carrier density. These results demonstrate that oxygen vacancies are the dominant source of mobile carriers when the LaAlO3 overlayer is amorphous, while both oxygen vacancies and polarization catastrophe contribute to the interface conductivity in unannealed crystalline LaAlO3/SrTiO3 heterostructures, and the polarization catastrophe alone accounts for the conductivity in oxygen-annealed crystalline LaAlO3/SrTiO3 heterostructures. Furthermore, we find that the crystallinity of the LaAlO3 layer is crucial for the polarization catastrophe mechanism in the case of crystalline LaAlO3 overlayers.

182 citations

Journal ArticleDOI
TL;DR: In this article, the electrical properties of amorphous and crystalline LaAlO/SrTiO heterostructures were compared and it was shown that the answer depends on the structure of the overlayer.
Abstract: Whether polarization catastrophe or oxygen vacancies is responsible for the remarkable emergence of a two-dimensional electron gas at the interface of the insulating oxides, polar LaAlO${}_{3}$ and nonpolar SrTiO${}_{3}$, has been hotly debated. Using a series of experiments that compare the electrical properties of amorphous and crystalline LaAlO${}_{3}$/SrTiO${}_{3}$ heterostructures, researchers discover that the answer depends on the structure of the LaAlO${}_{3}$ overlayer.

181 citations

Journal ArticleDOI
01 Mar 2018
TL;DR: The anomalous Hall effect is allowed by symmetry in some non-collinear antiferromagnets and is associated with Bloch-band topological features as discussed by the authors, which is of interest in the development of low power electronic devices, but such devices are likely to demand electrical control over the effect.
Abstract: The anomalous Hall effect is allowed by symmetry in some non-collinear antiferromagnets and is associated with Bloch-band topological features. This topological anomalous Hall effect is of interest in the development of low-power electronic devices, but such devices are likely to demand electrical control over the effect. Here we report the observation of the anomalous Hall effect in high-quality thin films of the cubic non-collinear antiferromagnet Mn3Pt epitaxially grown on ferroelectric BaTiO3 substrates. We demonstrate that epitaxial strain can alter the anomalous Hall conductivity of the Mn3Pt films by more than an order of magnitude. Furthermore, we show that the anomalous Hall effect can be turned on and off by applying a small electric field to the BaTiO3 substrate when the heterostructure is at a temperature of around 360 K and the Mn3Pt is close to the phase transition between a low-temperature non-collinear antiferromagnetic state and a high-temperature collinear antiferromagnetic state. The switching effect is due to piezoelectric strain transferred from the BaTiO3 substrate to the Mn3Pt film by interfacial strain mediation.

173 citations


Cited by
More filters
01 Jan 2011

2,117 citations

Journal ArticleDOI
TL;DR: A review of the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials can be found in this article, where the authors discuss some of the remaining bottlenecks and suggest possible avenues for future research.
Abstract: Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics and are capable of generating large magneto-transport effects Intense research efforts over the past decade have been invested in unraveling spin transport properties in antiferromagnetic materials Whether spin transport can be used to drive the antiferromagnetic order and how subsequent variations can be detected are some of the thrilling challenges currently being addressed Antiferromagnetic spintronics started out with studies on spin transfer, and has undergone a definite revival in the last few years with the publication of pioneering articles on the use of spin-orbit interactions in antiferromagnets This paradigm shift offers possibilities for radically new concepts for spin manipulation in electronics Central to these endeavors are the need for predictive models, relevant disruptive materials and new experimental designs This paper reviews the most prominent spintronic effects described based on theoretical and experimental analysis of antiferromagnetic materials It also details some of the remaining bottlenecks and suggests possible avenues for future research

1,442 citations

Journal ArticleDOI
TL;DR: The results show that the photogenrated electrons and holes can be separated between the different facets of semiconductor crystals, which may be useful in semiconductor physics and chemistry to construct highly efficient solar energy conversion systems.
Abstract: Charge separation is crucial for increasing the activity of semiconductor-based photocatalysts, especially in water splitting reactions. Here we show, using monoclinic bismuth vanadate crystal as a model photocatalyst, that efficient charge separation can be achieved on different crystal facets, as evidenced by the reduction reaction with photogenerated electrons and oxidation reaction with photogenerated holes, which take place separately on the {010} and {110} facets under photo-irradiation. Based on this finding, the reduction and oxidation cocatalysts are selectively deposited on the {010} and {110} facets respectively, resulting in much higher activity in both photocatalytic and photoelectrocatalytic water oxidation reactions, compared with the photocatalyst with randomly distributed cocatalysts. These results show that the photogenrated electrons and holes can be separated between the different facets of semiconductor crystals. This finding may be useful in semiconductor physics and chemistry to construct highly efficient solar energy conversion systems.

1,422 citations

Journal ArticleDOI
TL;DR: This Review compares classical and photocatalytic procedures for selected classes of reactions and highlights their advantages and limitations.
Abstract: Visible-light photocatalysis has evolved over the last decade into a widely used method in organic synthesis. Photocatalytic variants have been reported for many important transformations, such as cross-coupling reactions, α-amino functionalizations, cycloadditions, ATRA reactions, or fluorinations. To help chemists select photocatalytic methods for their synthesis, we compare in this Review classical and photocatalytic procedures for selected classes of reactions and highlight their advantages and limitations. In many cases, the photocatalytic reactions proceed under milder reaction conditions, typically at room temperature, and stoichiometric reagents are replaced by simple oxidants or reductants, such as air, oxygen, or amines. Does visible-light photocatalysis make a difference in organic synthesis? The prospect of shuttling electrons back and forth to substrates and intermediates or to selectively transfer energy through a visible-light-absorbing photocatalyst holds the promise to improve current procedures in radical chemistry and to open up new avenues by accessing reactive species hitherto unknown, especially by merging photocatalysis with organo- or metal catalysis.

1,211 citations

Journal ArticleDOI
TL;DR: Progress in the fundamental understanding and design of new multiferroic materials, advances in characterization and modelling tools to describe them, and usage in applications are reviewed.
Abstract: The manipulation of magnetic properties by an electric field in magnetoelectric multiferroic materials has driven significant research activity, with the goal of realizing their transformative technological potential. Here, we review progress in the fundamental understanding and design of new multiferroic materials, advances in characterization and modelling tools to describe them, and the exploration of devices and applications. Focusing on the translation of the many scientific breakthroughs into technological innovations, we identify the key open questions in the field where targeted research activities could have maximum impact in transitioning scientific discoveries into real applications. Magnetoelectric multiferroics, where magnetic properties are manipulated by electric field and vice versa, could lead to improved electronic devices. Here, advances in materials, characterisation and modelling, and usage in applications are reviewed.

1,020 citations