scispace - formally typeset
Search or ask a question
Author

Zhiqiang Zhang

Bio: Zhiqiang Zhang is an academic researcher from University of Science and Technology, Liaoning. The author has contributed to research in topics: Materials science & Catalysis. The author has an hindex of 60, co-authored 595 publications receiving 16675 citations. Previous affiliations of Zhiqiang Zhang include Beihang University & Chinese Ministry of Education.


Papers
More filters
Journal ArticleDOI
17 Jan 2002-Nature
TL;DR: The replication-defective adenovirus is a promising vaccine vector for development of an HIV-1 vaccine and elicited by a replication-incompetent Ad5 vector, used either alone or as a booster inoculation after priming with a DNA vector.
Abstract: Recent studies of human immunodeficiency virus type 1 (HIV-1) infection in humans and of simian immunodeficiency virus (SIV) in rhesus monkeys have shown that resolution of the acute viral infection and control of the subsequent persistent infection are mediated by the antiviral cellular immune response. We comparatively assessed several vaccine vector delivery systems-three formulations of a plasmid DNA vector, the modified vaccinia Ankara (MVA) virus, and a replication incompetent adenovirus type 5 (Ad5) vector-expressing the SIV gag protein for their ability to elicit such immune responses in monkeys. The vaccines were tested either as a single modality or in combined modality regimens. Here we show that the most effective responses were elicited by a replication-incompetent Ad5 vector, used either alone or as a booster inoculation after priming with a DNA vector. After challenge with a pathogenic HIV-SIV hybrid virus (SHIV), the animals immunized with Ad5 vector exhibited the most pronounced attenuation of the virus infection. The replication-defective adenovirus is a promising vaccine vector for development of an HIV-1 vaccine.

1,240 citations

Journal ArticleDOI
12 Nov 1999-Science
TL;DR: Both viruses were found to replicate predominantly in CD4(+) T cells at the portal of entry and in lymphoid tissues, and infection was propagated not only in activated and proliferating T cells but also, surprisingly, in resting T cells.
Abstract: In sexual transmission of simian immunodeficiency virus, and early and later stages of human immunodeficiency virus-type 1 (HIV-1) infection, both viruses were found to replicate predominantly in CD4(+) T cells at the portal of entry and in lymphoid tissues. Infection was propagated not only in activated and proliferating T cells but also, surprisingly, in resting T cells. The infected proliferating cells correspond to the short-lived population that produces the bulk of HIV-1. Most of the HIV-1-infected resting T cells persisted after antiretroviral therapy. Latently and chronically infected cells that may be derived from this population pose challenges to eradicating infection and developing an effective vaccine.

904 citations

Journal ArticleDOI
08 Nov 1996-Science
TL;DR: Estimates of the numbers of infected cells and the virus they could produce are consistent with the quantities of virus that have been detected in the bloodstream, and the cellular sources of virus production and storage in lymphoid tissues can now be studied over the course of infection and treatment.
Abstract: Tracking human immunodeficiency virus-type 1 (HIV-1) infection at the cellular level in tissue reservoirs provides opportunities to better understand the pathogenesis of infection and to rationally design and monitor therapy. A quantitative technique was developed to determine viral burden in two important cellular compartments in lymphoid tissues. Image analysis and in situ hybridization were combined to show that in the presymptomatic stages of infection there is a large, relatively stable pool of virions on the surfaces of follicular dendritic cells and a smaller pool of productively infected cells. Despite evidence of constraints on HIV-1 replication in the infected cell population in lymphoid tissues, estimates of the numbers of these cells and the virus they could produce are consistent with the quantities of virus that have been detected in the bloodstream. The cellular sources of virus production and storage in lymphoid tissues can now be studied with this approach over the course of infection and treatment.

615 citations

Journal ArticleDOI
09 May 1997-Science
TL;DR: In lymphoid tissue, where human immunodeficiency virus-type 1 (HIV-1) is produced and stored, three-drug treatment with viral protease and reverse transcriptase inhibitors markedly reduced viral burden as mentioned in this paper.
Abstract: In lymphoid tissue, where human immunodeficiency virus–type 1 (HIV-1) is produced and stored, three-drug treatment with viral protease and reverse transcriptase inhibitors markedly reduced viral burden. This was shown by in situ hybridization and computerized quantitative analysis of serial tonsil biopsies from previously untreated adults. The frequency of productive mononuclear cells (MNCs) initially diminished with a half-life of about 1 day. Surprisingly, the amount of HIV-1 RNA in virus trapped on follicular dendritic cells (FDCs) decreased almost as quickly. After 24 weeks, MNCs with very few copies of HIV-1 RNA per cell were still detectable, as was proviral DNA; however, the amount of FDC-associated virus decreased by ≥3.4 log units. Thus, 6 months of potent therapy controlled active replication and cleared >99.9 percent of virus from the secondary lymphoid tissue reservoir.

610 citations

Journal ArticleDOI
TL;DR: The first two China Youth Scholars Symposiums on Mg Alloys Research had been held at Harbin (2015) and Chongqing (2016) China, respectively, aiming to boost far-reaching initiatives for development of new Mg-based materials to satisfy the requirements for a broad range of industrial employments as mentioned in this paper.

488 citations


Cited by
More filters
Journal ArticleDOI
04 Jul 2013-PLOS ONE
TL;DR: This work has developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models, and helps researchers to visualize brain networks in an easy, flexible and quick manner.
Abstract: The human brain is a complex system whose topological organization can be represented using connectomics. Recent studies have shown that human connectomes can be constructed using various neuroimaging technologies and further characterized using sophisticated analytic strategies, such as graph theory. These methods reveal the intriguing topological architectures of human brain networks in healthy populations and explore the changes throughout normal development and aging and under various pathological conditions. However, given the huge complexity of this methodology, toolboxes for graph-based network visualization are still lacking. Here, using MATLAB with a graphical user interface (GUI), we developed a graph-theoretical network visualization toolbox, called BrainNet Viewer, to illustrate human connectomes as ball-and-stick models. Within this toolbox, several combinations of defined files with connectome information can be loaded to display different combinations of brain surface, nodes and edges. In addition, display properties, such as the color and size of network elements or the layout of the figure, can be adjusted within a comprehensive but easy-to-use settings panel. Moreover, BrainNet Viewer draws the brain surface, nodes and edges in sequence and displays brain networks in multiple views, as required by the user. The figure can be manipulated with certain interaction functions to display more detailed information. Furthermore, the figures can be exported as commonly used image file formats or demonstration video for further use. BrainNet Viewer helps researchers to visualize brain networks in an easy, flexible and quick manner, and this software is freely available on the NITRC website (www.nitrc.org/projects/bnv/).

3,048 citations

Journal ArticleDOI
14 Nov 1997-Science
TL;DR: In a study of 22 patients successfully treated with HAART for up to 30 months, replication-competent virus was routinely recovered from resting CD4+ T lymphocytes, and generally did not show mutations associated with resistance to the relevant antiretroviral drugs.
Abstract: The hypothesis that quiescent CD4+ T lymphocytes carrying proviral DNA provide a reservoir for human immunodeficiency virus-type 1 (HIV-1) in patients on highly active antiretroviral therapy (HAART) was examined. In a study of 22 patients successfully treated with HAART for up to 30 months, replication-competent virus was routinely recovered from resting CD4+ T lymphocytes. The frequency of resting CD4+ T cells harboring latent HIV-1 was low, 0.2 to 16.4 per 10(6) cells, and, in cross-sectional analysis, did not decrease with increasing time on therapy. The recovered viruses generally did not show mutations associated with resistance to the relevant antiretroviral drugs. This reservoir of nonevolving latent virus in resting CD4+ T cells should be considered in deciding whether to terminate treatment in patients who respond to HAART.

2,909 citations

Journal ArticleDOI
TL;DR: This critical review describes the latest developments in the sensitization of near-infrared luminescence, "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), electroluminescentmaterials for organic light emitting diodes, with emphasis on white light generation, and applications in luminecent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation.
Abstract: Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) “soft” luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

2,895 citations

Journal ArticleDOI
TL;DR: Radiomics, the high-throughput mining of quantitative image features from standard-of-care medical imaging that enables data to be extracted and applied within clinical-decision support systems to improve diagnostic, prognostic, and predictive accuracy, is gaining importance in cancer research as mentioned in this paper.
Abstract: Radiomics, the high-throughput mining of quantitative image features from standard-of-care medical imaging that enables data to be extracted and applied within clinical-decision support systems to improve diagnostic, prognostic, and predictive accuracy, is gaining importance in cancer research. Radiomic analysis exploits sophisticated image analysis tools and the rapid development and validation of medical imaging data that uses image-based signatures for precision diagnosis and treatment, providing a powerful tool in modern medicine. Herein, we describe the process of radiomics, its pitfalls, challenges, opportunities, and its capacity to improve clinical decision making, emphasizing the utility for patients with cancer. Currently, the field of radiomics lacks standardized evaluation of both the scientific integrity and the clinical relevance of the numerous published radiomics investigations resulting from the rapid growth of this area. Rigorous evaluation criteria and reporting guidelines need to be established in order for radiomics to mature as a discipline. Herein, we provide guidance for investigations to meet this urgent need in the field of radiomics.

2,730 citations