scispace - formally typeset
Search or ask a question
Author

Zhiyuan Cheng

Other affiliations: Google, Beihang University
Bio: Zhiyuan Cheng is an academic researcher from Texas A&M University. The author has contributed to research in topics: Social media & Advertising campaign. The author has an hindex of 16, co-authored 22 publications receiving 2650 citations. Previous affiliations of Zhiyuan Cheng include Google & Beihang University.

Papers
More filters
Proceedings ArticleDOI
26 Oct 2010
TL;DR: A probabilistic framework for estimating a Twitter user's city-level location based purely on the content of the user's tweets, which can overcome the sparsity of geo-enabled features in these services and enable new location-based personalized information services, the targeting of regional advertisements, and so on.
Abstract: We propose and evaluate a probabilistic framework for estimating a Twitter user's city-level location based purely on the content of the user's tweets, even in the absence of any other geospatial cues By augmenting the massive human-powered sensing capabilities of Twitter and related microblogging services with content-derived location information, this framework can overcome the sparsity of geo-enabled features in these services and enable new location-based personalized information services, the targeting of regional advertisements, and so on Three of the key features of the proposed approach are: (i) its reliance purely on tweet content, meaning no need for user IP information, private login information, or external knowledge bases; (ii) a classification component for automatically identifying words in tweets with a strong local geo-scope; and (iii) a lattice-based neighborhood smoothing model for refining a user's location estimate The system estimates k possible locations for each user in descending order of confidence On average we find that the location estimates converge quickly (needing just 100s of tweets), placing 51% of Twitter users within 100 miles of their actual location

1,213 citations

Proceedings Article
05 Jul 2011
TL;DR: It is found that LSS users follow the “Levy Flight” mobility pattern and adopt periodic behaviors; while geographic and economic constraints affect mobility patterns, so does individual social status; and Content and sentiment-based analysis of posts associated with checkins can provide a rich source of context for better understanding how users engage with these services.
Abstract: Location sharing services (LSS) like Foursquare, Gowalla, and Facebook Places support hundreds of millions of user-driven footprints (i.e., "checkins"). Those global-scale footprints provide a unique opportunity to study the social and temporal characteristics of how people use these services and to model patterns of human mobility, which are significant factors for the design of future mobile+location-based services, traffic forecasting, urban planning, as well as epidemiological models of disease spread. In this paper, we investigate 22 million checkins across 220,000 users and report a quantitative assessment of human mobility patterns by analyzing the spatial, temporal, social, and textual aspects associated with these footprints. We find that: (i) LSS users follow the “Levy Flight” mobility pattern and adopt periodic behaviors; (ii) While geographic and economic constraints affect mobility patterns, so does individual social status; and (iii) Content and sentiment-based analysis of posts associated with checkins can provide a rich source of context for better understanding how users engage with these services.

742 citations

Proceedings ArticleDOI
27 Oct 2013
TL;DR: A novel network-based approach for location estimation in social media that integrates evidence of the social tie strength between users for improved location estimation and significantly improves the results of location estimation relative to a state-of-the-art technique.
Abstract: We propose a novel network-based approach for location estimation in social media that integrates evidence of the social tie strength between users for improved location estimation. Concretely, we propose a location estimator -- FriendlyLocation -- that leverages the relationship between the strength of the tie between a pair of users, and the distance between the pair. Based on an examination of over 100 million geo-encoded tweets and 73 million Twitter user profiles, we identify several factors such as the number of followers and how the users interact that can strongly reveal the distance between a pair of users. We use these factors to train a decision tree to distinguish between pairs of users who are likely to live nearby and pairs of users who are likely to live in different areas. We use the results of this decision tree as the input to a maximum likelihood estimator to predict a user's location. We find that this proposed method significantly improves the results of location estimation relative to a state-of-the-art technique. Our system reduces the average error distance for 80% of Twitter users from 40 miles to 21 miles using only information from the user's friends and friends-of-friends, which has great significance for augmenting traditional social media and enriching location-based services with more refined and accurate location estimates.

161 citations

Proceedings ArticleDOI
18 May 2015
TL;DR: This work implemented and built a topic recommender predicting user's topical interests using their actions within Google+, and experimentally showed that it obtained better and cleaner signals than baseline methods, and is able to more accurately predict topic interests as well as achieve better coverage.
Abstract: Many recommenders aim to provide relevant recommendations to users by building personal topic interest profiles and then using these profiles to find interesting contents for the user. In social media, recommender systems build user profiles by directly combining users' topic interest signals from a wide variety of consumption and publishing behaviors, such as social media posts they authored, commented on, +1'd or liked. Here we propose to separately model users' topical interests that come from these various behavioral signals in order to construct better user profiles. Intuitively, since publishing a post requires more effort, the topic interests coming from publishing signals should be more accurate of a user's central interest than, say, a simple gesture such as a +1. By separating a single user's interest profile into several behavioral profiles, we obtain better and cleaner topic interest signals, as well as enabling topic prediction for different types of behavior, such as topics that the user might +1 or comment on, but might never write a post on that topic. To do this at large scales in Google+, we employed matrix factorization techniques to model each user's behaviors as a separate example entry in the input user-by-topic matrix. Using this technique, which we call "behavioral factorization", we implemented and built a topic recommender predicting user's topical interests using their actions within Google+. We experimentally showed that we obtained better and cleaner signals than baseline methods, and are able to more accurately predict topic interests as well as achieve better coverage.

133 citations

Proceedings ArticleDOI
13 May 2013
TL;DR: It is found that although hashtags are a global phenomenon, the physical distance between locations is a strong constraint on the adoption of hashtags, both in terms of the hashtags shared between locations and in the timing of when these hashtag are adopted.
Abstract: We conduct a study of the spatio-temporal dynamics of Twitter hashtags through a sample of 2 billion geo-tagged tweets. In our analysis, we (i) examine the impact of location, time, and distance on the adoption of hashtags, which is important for understanding meme diffusion and information propagation; (ii) examine the spatial propagation of hashtags through their focus, entropy, and spread; and (iii) present two methods that leverage the spatio-temporal propagation of hashtags to characterize locations. Based on this study, we find that although hashtags are a global phenomenon, the physical distance between locations is a strong constraint on the adoption of hashtags, both in terms of the hashtags shared between locations and in the timing of when these hashtags are adopted. We find both spatial and temporal locality as most hashtags spread over small geographical areas but at high speeds. We also find that hashtags are mostly a local phenomenon with long-tailed life spans. These (and other) findings have important implications for a variety of systems and applications, including targeted advertising, location-based services, social media search, and content delivery networks.

96 citations


Cited by
More filters
01 Jan 2013

1,098 citations

Posted Content
TL;DR: Data collected using Twitter's sampled API service is compared with data collected using the full, albeit costly, Firehose stream that includes every single published tweet to help researchers and practitioners understand the implications of using the Streaming API.
Abstract: Twitter is a social media giant famous for the exchange of short, 140-character messages called "tweets". In the scientific community, the microblogging site is known for openness in sharing its data. It provides a glance into its millions of users and billions of tweets through a "Streaming API" which provides a sample of all tweets matching some parameters preset by the API user. The API service has been used by many researchers, companies, and governmental institutions that want to extract knowledge in accordance with a diverse array of questions pertaining to social media. The essential drawback of the Twitter API is the lack of documentation concerning what and how much data users get. This leads researchers to question whether the sampled data is a valid representation of the overall activity on Twitter. In this work we embark on answering this question by comparing data collected using Twitter's sampled API service with data collected using the full, albeit costly, Firehose stream that includes every single published tweet. We compare both datasets using common statistical metrics as well as metrics that allow us to compare topics, networks, and locations of tweets. The results of our work will help researchers and practitioners understand the implications of using the Streaming API.

848 citations

Journal ArticleDOI
TL;DR: A comprehensive introduction to a large body of research, more than 200 key references, is provided, with the aim of supporting the further development of recommender systems exploiting information beyond the U-I matrix.
Abstract: Over the past two decades, a large amount of research effort has been devoted to developing algorithms that generate recommendations. The resulting research progress has established the importance of the user-item (U-I) matrix, which encodes the individual preferences of users for items in a collection, for recommender systems. The U-I matrix provides the basis for collaborative filtering (CF) techniques, the dominant framework for recommender systems. Currently, new recommendation scenarios are emerging that offer promising new information that goes beyond the U-I matrix. This information can be divided into two categories related to its source: rich side information concerning users and items, and interaction information associated with the interplay of users and items. In this survey, we summarize and analyze recommendation scenarios involving information sources and the CF algorithms that have been recently developed to address them. We provide a comprehensive introduction to a large body of research, more than 200 key references, with the aim of supporting the further development of recommender systems exploiting information beyond the U-I matrix. On the basis of this material, we identify and discuss what we see as the central challenges lying ahead for recommender system technology, both in terms of extensions of existing techniques as well as of the integration of techniques and technologies drawn from other research areas.

777 citations

Proceedings Article
05 Jul 2011
TL;DR: It is found that LSS users follow the “Levy Flight” mobility pattern and adopt periodic behaviors; while geographic and economic constraints affect mobility patterns, so does individual social status; and Content and sentiment-based analysis of posts associated with checkins can provide a rich source of context for better understanding how users engage with these services.
Abstract: Location sharing services (LSS) like Foursquare, Gowalla, and Facebook Places support hundreds of millions of user-driven footprints (i.e., "checkins"). Those global-scale footprints provide a unique opportunity to study the social and temporal characteristics of how people use these services and to model patterns of human mobility, which are significant factors for the design of future mobile+location-based services, traffic forecasting, urban planning, as well as epidemiological models of disease spread. In this paper, we investigate 22 million checkins across 220,000 users and report a quantitative assessment of human mobility patterns by analyzing the spatial, temporal, social, and textual aspects associated with these footprints. We find that: (i) LSS users follow the “Levy Flight” mobility pattern and adopt periodic behaviors; (ii) While geographic and economic constraints affect mobility patterns, so does individual social status; and (iii) Content and sentiment-based analysis of posts associated with checkins can provide a rich source of context for better understanding how users engage with these services.

742 citations