scispace - formally typeset
Search or ask a question
Author

Zhong Chen

Bio: Zhong Chen is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Medicine & Chemistry. The author has an hindex of 80, co-authored 1000 publications receiving 28171 citations. Previous affiliations of Zhong Chen include Institute of High Performance Computing Singapore & National Institute of Education.
Topics: Medicine, Chemistry, Catalysis, Coating, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: A new method for high-quality spectra reconstruction from non-uniformly sampled data is introduced, based on recent developments in the field of signal processing theory and uses the so far unexploited general property of the NMR signal, its low rank.
Abstract: Accelerated multi-dimensional NMR spectroscopy is a prerequisite for high-throughput applications, studying short-lived molecular systems and monitoring chemical reactions in real time. Non-uniform sampling is a common approach to reduce the measurement time. Here, a new method for high-quality spectra reconstruction from non-uniformly sampled data is introduced, which is based on recent developments in the field of signal processing theory and uses the so far unexploited general property of the NMR signal, its low rank. Using experimental and simulated data, we demonstrate that the low-rank reconstruction is a viable alternative to the current state-of-the-art technique compressed sensing. In particular, the low-rank approach is good in preserving of low-intensity broad peaks, and thus increases the effective sensitivity in the reconstructed spectra.

142 citations

Journal ArticleDOI
TL;DR: Hierarchical vanadium oxide nanoflowers (V10O24·nH2O) were synthesized via a simple, high throughput method employing a fast electrochemical reaction of vanadium foil in NaCl aqueous solution, followed by an aging treatment at room temperature.
Abstract: Hierarchical vanadium oxide nanoflowers (V10O24·nH2O) were synthesized via a simple, high throughput method employing a fast electrochemical reaction of vanadium foil in NaCl aqueous solution, followed by an aging treatment at room temperature. During the electrochemical process, the anodic vanadium foil is dissolved in the form of multi-valence vanadium ions into the solution, driven by the applied electrical field. After being oxidized, the VO2+ and VO2+ ions instantly react with the OH− in the electrolyte to form uniformly distributed vanadium oxide nanoparticles at a high solution temperature due to the exothermic nature of the reaction. Finally, nucleation and growth of one dimensional nanoribbons takes place on the surface of the nanoparticles during the aging process to form unique hierarchical V10O24·nH2O nanoflowers. Upon heat treatment, the hierarchical architecture of the vanadium pentoxide nanoflower morphology is maintained. Such a material provides porous channels, which facilitate fast ion diffusion and effective strain relaxation upon Li ion charge–discharge cycling. The electrochemical tests reveal that the V2O5 nanoflowers cathode could deliver high reversible specific capacities with 100% coulombic efficiency, especially at high C rates (e.g., 140 mAh g−1 at 10 C).

141 citations

Journal ArticleDOI
TL;DR: In this article, in situ-formed cobalt phosphate decorated with N-doped graphitic carbon was prepared using phosphonate-based metal-organic frameworks (MOFs) as the precursor.
Abstract: Cobalt phosphate is considered to be one of the most active catalysts for the oxygen evolution reaction (OER) in neutral or near-neutral pH media, but only a few transition-metal phosphates are investigated in alkaline media, probably due to their poor intrinsic electrical conductivity and/or tendency to aggregate. Herein, in situ-formed cobalt phosphate decorated with N-doped graphitic carbon was prepared using phosphonate-based metal–organic frameworks (MOFs) as the precursor. It can serve as a highly active OER catalyst in alkaline media, affording a current density of 10 mA cm–2 at a small overpotential of 215 mV on the Ni foam. A combination of X-ray absorption spectroscopy and high-resolution XPS elucidates the origin of the high activity. Our observations unveil that cobalt diphosphate having the distorted metal coordination geometry with long Co–O and Co–Co distances is mainly responsible for the high OER activity. These results not only demonstrate the potential of a low-cost OER catalyst derived...

140 citations

Journal ArticleDOI
TL;DR: A new paradigm for manipulating interfacial chemistry of electrode to solve the key obstacle for LNMO commercialization is heralded, opening a powerful avenue for unlocking the current challenges for a wide family of high operating voltage cathode materials (>4.5 V) toward practical applications.
Abstract: Spinel LiNi0.5 Mn1.5 O4 (LNMO) is the most promising cathode material for achieving high energy density lithium-ion batteries attributed to its high operating voltage (≈4.75 V). However, at such high voltage, the commonly used battery electrolyte is suffered from severe oxidation, forming unstable solid-electrolyte interphase (SEI) layers. This would induce capacity fading, self-discharge, as well as inferior rate capabilities for the electrode during cycling. This work first time discovers that the electrolyte oxidation is effectively negated by introducing an electrochemically stable silk sericin protein, which is capable to stabilize the SEI layer and suppress the self-discharge behavior for LNMO. In addition, robust mechanical support of sericin coating maintains the structural integrity during the fast charging/discharging process. Benefited from these merits, the sericin-based LNMO electrode possesses a much lower Li-ion diffusion energy barrier (26.1 kJ mol-1 ) for than that of polyvinylidene fluoride-based LNMO electrode (37.5 kJ mol-1 ), delivering a remarkable high-rate performance. This work heralds a new paradigm for manipulating interfacial chemistry of electrode to solve the key obstacle for LNMO commercialization, opening a powerful avenue for unlocking the current challenges for a wide family of high operating voltage cathode materials (>4.5 V) toward practical applications.

140 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the special wettable materials with intelligent functions, including photocatalytic, self-healing and switchable oil/water separation materials, which can achieve self-cleaning, selfhealing, and efficient oily wastewater treatment.
Abstract: Clean water resources are essential to our human society. Oil leakage has caused water contamination, which leads to serious shortage of clean water, environmental deterioration, and even increasing number of deaths. It is of great urgency to solve the oil-polluted water problems worldwide. Efficient oil/water separation, especially emulsified oil/water mixture separation, is widely used to mitigate water pollution issues. Recently, advanced materials with special wettability have been employed for oily wastewater remediation. Moreover, by endowing them with various intelligent functions, smart materials can effectively separate complex oil/water mixtures including extremely stable emulsions. In this review, oil/water separation mechanisms and various fabrication methods of special wettability separation materials are summarized. We highlight the special wettable materials with intelligent functions, including photocatalytic, self-healing, and switchable oil/water separation materials, which can achieve self-cleaning, self-healing, and efficient oily wastewater treatment. In each section, the acting mechanisms, fabricating technologies, representative studies, and separation efficiency are briefly introduced. Lastly, the challenges and outlook for oil/water separation based on the special wettability materials are discussed.

137 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations