scispace - formally typeset
Search or ask a question
Author

Zhong Chen

Bio: Zhong Chen is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Medicine & Chemistry. The author has an hindex of 80, co-authored 1000 publications receiving 28171 citations. Previous affiliations of Zhong Chen include Institute of High Performance Computing Singapore & National Institute of Education.
Topics: Medicine, Chemistry, Catalysis, Coating, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a noncontact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs) was proposed, where a high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light source to avoid the band-gap modulation effect.
Abstract: We put forward a non-contact method for determining the transient two-dimensional (2D) temperature distribution of light emitting diodes (LEDs). A high-speed camera is employed to acquire the 2D reflective light of blue LED under test (468 nm) illuminated by a red LED (690 nm) as the incident light source to avoid the band-gap modulation effect. The 2D transient temperature distribution is derived in terms of temperature-dependent reflective light intensity relationship. Two cases are studied to test the system in this work under (1) 1980 fps frame rate with time resolution of $505~\mu \text{s}$ at 300 mA, and (2) 5600 fps with time resolution of $179~\mu \text{s}$ at 500 mA. Compared with the conventional infrared thermal imaging (TI) method, the spatial resolution and the time resolution of this proposed method increase up to one and two orders of magnitude, respectively.

4 citations

Journal ArticleDOI
TL;DR: It is suggested that the carrier mobility determine the degree of carrier localization effect - inactive carriers tend to be localized at low temperature but escape at high temperature from bindings of localization centers, as a result, carrier localization is intense only at lowTemperature for low-indium devices.
Abstract: We investigate the carrier localization effect in the low-indium ultraviolet AlGaInN light-emitting diodes with a 365 nm peak and a wide yellow luminous band over the visible range. Temperature-dependent electroluminescence spectra (EL) are measured under a wide range of temperature. We found that carrier localization effect relies on the carrier mobility and manifests itself by altering several macroscopic quantities, such as ELs and electrical resistance of the device. Under moderate injection densities, plots of EL peak energy vs. temperatures exhibits S-shapes. At low temperatures, line-width broadening in EL spectra and irregular humps in I-V curves were observed at similar level of injection densities. Both phenomena diminish as temperature increases and eventually disappear at room temperature. All the results stem from carrier localization and following delocalization effect. It suggests that the carrier mobility determine the degree of carrier localization effect - inactive carriers tend to be localized at low temperature but escape at high temperature from bindings of localization centers. As a result, carrier localization is intense only at low temperature for low-indium devices.

4 citations

Journal ArticleDOI
TL;DR: In this paper, an alternating current InGaN/GaN light-emitting diodes with the focus on thermal characteristics was studied and three shortcomings were identified in comparison with the DC-LEDs counterpart.
Abstract: During studies of alternating current InGaN/GaN light-emitting diodes with the focus on thermal characteristics, we have identified three shortcomings in comparison with the DC-LEDs counterpart. Via laboratory experiments using infrared thermal imagers and numerical simulations using the Galerkin finite element method, approaches of suppressing these shortcomings are first speculated, then confirmed, and finally proposed.

4 citations

Proceedings ArticleDOI
01 Jul 2017
TL;DR: Results on synthetic and realistic data show that the new approach can achieve faithful spectrum reconstruction and outperforms state-of-the-art low rank Hankel matrix method.
Abstract: Multi-dimensional magnetic resonance spectroscopy is an important tool for studying molecular structures, interactions and dynamics in bio-engineering. The data acquisition time, however, is relatively long and non-uniform sampling can be applied to reduce this time. To obtain the full spectrum,a reconstruction method with Vandermonde factorization is proposed. This method explores the general signal property in magnetic resonance spectroscopy: Its time domain signal is approximated by a sum of a few exponentials. Results on synthetic and realistic data show that the new approach can achieve faithful spectrum reconstruction and outperforms state-of-the-art low rank Hankel matrix method.

4 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations