scispace - formally typeset
Search or ask a question
Author

Zhong Chen

Bio: Zhong Chen is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Medicine & Chemistry. The author has an hindex of 80, co-authored 1000 publications receiving 28171 citations. Previous affiliations of Zhong Chen include Institute of High Performance Computing Singapore & National Institute of Education.
Topics: Medicine, Chemistry, Catalysis, Coating, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, full-color micro light-emitting diodes (μ-LEDs) fabricated from semipolar wafers, with a quantum-dot photoresist color-conversion layer, were demonstrated.
Abstract: Red-green-blue (RGB) full-color micro light-emitting diodes (μ-LEDs) fabricated from semipolar (20-21) wafers, with a quantum-dot photoresist color-conversion layer, were demonstrated. The semipolar (20-21) InGaN/GaN μ-LEDs were fabricated on large (4 in.) patterned sapphire substrates by orientation-controlled epitaxy. The semipolar μ-LEDs showed a 3.2 nm peak wavelength shift and a 14.7% efficiency droop under 200 A/cm2 injected current density, indicating significant amelioration of the quantum-confined Stark effect. Because of the semipolar μ-LEDs’ emission-wavelength stability, the RGB pixel showed little color shift with current density and achieved a wide color gamut (114.4% NTSC space and 85.4% Rec. 2020).

99 citations

Journal ArticleDOI
TL;DR: The data demonstrate that the subtle differences in metabolite profiles in serum of pancreatic cancer patients and that of healthy subjects as a result of physiological and pathological variations could be identified by NMR-based metabolomics and exploited as metabolic markers for the early detection of pancreatIC cancer.
Abstract: Pancreatic cancer is a malignant tumor with the worst prognosis among all cancers At the time of diagnosis, surgical cure is no longer a feasible option for most patients, thus early detection of pancreatic cancer is crucial for its treatment Metabolomics is a powerful new analytical approach to detect the metabolome of cells, tissue, or biofluids Here, we report the application of (1)H nuclear magnetic resonance (NMR) combined with principal components analysis to discriminate pancreatic cancer patients from healthy controls based on metabolomic profiling of the serum The metabolic analysis revealed significant lower of 3-hydroxybutyrate, 3-hydroxyisovalerate, lactate, and trimethylamine-N-oxide as well as significant higher level of isoleucine, triglyceride, leucine, and creatinine in the serum from pancreatic cancer patients compared to that of healthy controls Our data demonstrate that the subtle differences in metabolite profiles in serum of pancreatic cancer patients and that of healthy subjects as a result of physiological and pathological variations could be identified by NMR-based metabolomics and exploited as metabolic markers for the early detection of pancreatic cancer

99 citations

Journal ArticleDOI
TL;DR: Experimental results show that the proposed deep convolutional neural network model outperforms state-of-the-art MRI super-resolution methods in terms of visual quality and objective quality criteria such as peak signal-to-noise ratio and structural similarity.

96 citations

Journal ArticleDOI
TL;DR: In this article, a self-cleaning test, which measures the extent of dirt accumulation and subsequent removal by water spray, was performed, and the results showed that 15-wt.% loading of 10-20-nm silica particles showed the best selfcleaning performance both before and after mechanical abrasion.

96 citations

Journal ArticleDOI
TL;DR: Experimental results on simulated and real magnetic resonance spectroscopy data show that the proposed approach can successfully recover full signals from very limited samples and is robust to the estimated tensor rank.
Abstract: Signals are generally modeled as a superposition of exponential functions in spectroscopy of chemistry, biology, and medical imaging. For fast data acquisition or other inevitable reasons, however, only a small amount of samples may be acquired, and thus, how to recover the full signal becomes an active research topic, but existing approaches cannot efficiently recover $N$ -dimensional exponential signals with $N\geq 3$ . In this paper, we study the problem of recovering $N$ -dimensional (particularly $N\geq 3$ ) exponential signals from partial observations, and formulate this problem as a low-rank tensor completion problem with exponential factor vectors. The full signal is reconstructed by simultaneously exploiting the CANDECOMP/PARAFAC tensor structure and the exponential structure of the associated factor vectors. The latter is promoted by minimizing an objective function involving the nuclear norm of Hankel matrices. Experimental results on simulated and real magnetic resonance spectroscopy data show that the proposed approach can successfully recover full signals from very limited samples and is robust to the estimated tensor rank.

94 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations