scispace - formally typeset
Search or ask a question
Author

Zhong Chen

Bio: Zhong Chen is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Medicine & Chemistry. The author has an hindex of 80, co-authored 1000 publications receiving 28171 citations. Previous affiliations of Zhong Chen include Institute of High Performance Computing Singapore & National Institute of Education.
Topics: Medicine, Chemistry, Catalysis, Coating, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the fracture toughness and critical energy-release rate of intermetallic thin films were measured using a controlled buckling test, which is a promising fast and effective way to elucidate mechanical properties of thin films.
Abstract: Intermetallic compounds (IMCs) are formed as a result of interaction between solder and metallization to form joints in electronic packaging. These joints provide mechanical and electrical contacts between components. The knowledge of fracture strength of the IMCs will facilitate predicting the overall joint property, as it is more disposed to failure at the joint compared to the solder because of its brittle characteristics. The salient feature of this paper is the measurement of the fracture toughness and the critical energy-release rate of Cu3Sn and Cu6Sn5 intermetallic thin films, which is the result of the interaction between Sn from the solder and Cu from the metallization. To achieve the objective, a controlled buckling test was used. A buckling test in the current work refers to one that displays large transverse displacement caused by axial compressive loading on a slender beam. The stress and strain along the beam can be easily calculated by the applied displacement. Fracture-toughness values of Cu3Sn and Cu6Sn5 are 2.85 MPa √m ± 0.17 MPa √m and 2.36 MPa √m ± 0.15 MPa √m, respectively. Corresponding critical energy-release rate values are 65.5 J/m2 ± 8.0 J/m2 and 55.9 J/m2 ± 7.3 J/m2, respectively. The values obtained were much higher than the ones measured in bulk intermetallic samples but correlated well with those values obtained from conventional fracture-toughness specimens when fracture was confined within the intermetallic layers. Hence, the controlled buckling test is a promising fast and effective way to elucidate mechanical properties of thin films.

42 citations

Journal ArticleDOI
TL;DR: In this paper, an electrolessly plated Ni-Co-P alloy was developed as the solder metallization in order to address the reliability challenges brought about by the accelerated reaction with the implementation of lead-free solders.

42 citations

Journal ArticleDOI
TL;DR: In this paper, an efficient, sustainable and scalable strategy for the synthesis of porous cobalt/nitrogen co-doped carbons via pyrolysis of aniline-modified ZIFs, has been demonstrated.

41 citations

Journal ArticleDOI
TL;DR: In this paper, AlOOH boehmite nanorods were used as a filler to develop sol gel based and polymer based hybrid composite coatings and the fracture toughness of the composite was significantly improved.

41 citations

Journal ArticleDOI
TL;DR: In this paper, the crystallochemical mechanisms that underpin the migration of nano-size alumina, intermetallic growth and phase transformations in AueAl wire bonds during annealing from175 C to 250 C by utilizing high-resolution transmission electron microscopy (HRTEM).

41 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations