scispace - formally typeset
Search or ask a question
Author

Zhong Chen

Bio: Zhong Chen is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Medicine & Chemistry. The author has an hindex of 80, co-authored 1000 publications receiving 28171 citations. Previous affiliations of Zhong Chen include Institute of High Performance Computing Singapore & National Institute of Education.
Topics: Medicine, Chemistry, Catalysis, Coating, Adsorption


Papers
More filters
Journal ArticleDOI
TL;DR: 1H NMR spectroscopy together with pattern recognition methods was used to investigate the responses of hepatopancreas and gill of Haliotis diversicolor to TBT and TPT exposure and provides a useful insight into the toxicological mechanisms of organotin compounds on Haliots diversicolors.

31 citations

Journal ArticleDOI
TL;DR: The need for environmental remediation processes on a large scale is becoming ever more urgent, especially in anticipation of the increasing demand (and potential shortage) of potable water supplies for a growing world population as discussed by the authors.
Abstract: The need for environmental remediation processes on a large scale is becoming ever more urgent, especially in anticipation of the increasing demand (and potential shortage) of potable water supplies for a growing world population. Among the armory of advanced oxidation technologies (AOTs), photocatalytic (solar-light-driven) processes are particularly attractive, and photocatalysts have a well-demonstrated potential to mineralize harmful organic substances in air and water and even to act as regenerable adsorbents for toxic heavy metal ions, some of these being recovered as photodeposited metals. [1] Although anatase TiO2 remains the most popular photocatalyst due to high catalytic activity and chemical stability, there are some drawbacks associated with it. The activity is confined to UV-light stimulation, representing just a few percent of the solar-power spectrum. In this respect, much research has been done in modifying the bandgap of the material to extend the absorption into the visible-light region. [2] In addition, the adsorptive properties of TiO2 are not ideal either. [3] Since photoreactions take place at or near the catalyst surface, surface adsorption is critical for efficient interfacial charge transfer to and from the target molecules. In contrast, titanate materials have recently been identified as superior adsorbents for, for example, organic dyes and heavy metal ions. [4] The crystal structure consists of layers of TiO6 octahedra in edge connectivity with protons or alkali metal ions localized between the layers. [5] Various one-dimensional structures, including nano

31 citations

Journal ArticleDOI
Lin Chen1, Lijun Bao1, Jing Li1, Shuhui Cai1, Congbo Cai1, Zhong Chen1 
TL;DR: A hybrid scheme based on random sampling, singular value decomposition (SVD) and compressed sensing (CS) was introduced to reduce these aliasing artifacts and improve the image quality and the efficiency of this hybrid scheme was demonstrated by numerical simulations and experiments.

31 citations

Journal ArticleDOI
TL;DR: D Dramatic resolution enhancement and solvent suppression in the measurements of a piece of grape sarcocarp suggest potential applications of the iDQF-HOMOGENIZED method in in vivo spectroscopy.
Abstract: Intermolecular zero-quantum coherences (iZQCs) are not susceptible to magnetic field inhomogeneities significantly larger than the dipolar correlation distance and can be used to obtain 1D high-resolution spectra in an inhomogeneous field. However, with the iZQC methods proposed previously, residual conventional single-quantum coherences (SQCs) originating mainly from solvent resonance result in strong t(1) ridge noises. A modified HOMOGENIZED with an intermolecular double-quantum filter (iDQF), named iDQF-HOMOGENIZED, is presented in this work to suppress the residual conventional SQC signals as well as solvent iZQC signals. The solvent-suppression efficiency of the iDQF-HOMOGENIZED is analyzed and a thorough comparison of the new sequence with several relevant pulse sequences is made. Dramatic resolution enhancement and solvent suppression in the measurements of a piece of grape sarcocarp suggest potential applications of the method in in vivo spectroscopy.

31 citations

Journal ArticleDOI
TL;DR: In this paper, a tensile test was performed to investigate the effect of P content on the solder joint strength, showing that low P samples exhibited the highest joint strength after multiple reflows, while the strength of medium and high P samples decreased more rapidly.
Abstract: Electroless Ni-P layers with three different P contents (6.1 wt.%, 8.8 wt.%, and 12.3wt.%) were deposited on copper (Cu) substrates. Multilayered samples of Sn-3.5Ag/Ni-P/Cu stack were prepared and subjected to multiple reflows at 250°C. A tensile test was performed to investigate the effect of P content on the solder joint strength. The low P samples exhibited the highest joint strength after multiple reflows, while the strength of medium and high P samples decreased more rapidly. From interfacial analysis, the Ni3Sn4 intermetallic compound (IMC) formed at the interface of low P sample was found to be more stable, while the one of medium and high P samples spalled into the molten solder. The IMC spallation sped up the consumption of electroless Ni-P, leading to the large formation of Cu-Sn IMCs. Fractographic and microstructural analyses showed that the degradation in solder joint strength was due to the formation of layers of voids and growth of Cu-Sn IMCs between the solder and the Cu substrate.

30 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations