scispace - formally typeset
Search or ask a question
Author

Zhong Chen

Bio: Zhong Chen is an academic researcher from Nanyang Technological University. The author has contributed to research in topics: Medicine & Chemistry. The author has an hindex of 80, co-authored 1000 publications receiving 28171 citations. Previous affiliations of Zhong Chen include Institute of High Performance Computing Singapore & National Institute of Education.
Topics: Medicine, Chemistry, Catalysis, Coating, Adsorption


Papers
More filters
Journal ArticleDOI
06 Nov 2018
TL;DR: The current study provides important insight into the roles of VO on α-Fe2O3 photoanode, especially on its surface catalysis, and the generated lesson is also helpful for the improvement of other PEC photoanodes materials.
Abstract: The effect of oxygen vacancies (VO) on α-Fe2O3 (110) facet on the performance of photoelectrochemical (PEC) water splitting is researched by both experiments and density functional theory (DFT) calculations. The experimental results manifest that the enhancement in photocurrent density by the presence of VO is related with increased charge separation and charge-transfer efficiencies. The electrochemical analysis reveals that the sample with VO demonstrates an enhanced carrier density and reduced charge-transfer resistance. The results of DFT calculation indicate that the better charge separation is also contributed by the decrease of potential on the VO surface, which improves the hole transport from the bulk to the surface. The reduced charge-transfer resistance is owing to the greatly increased number of active sites. The current study provides important insight into the roles of VO on α-Fe2O3 photoanode, especially on its surface catalysis. The generated lesson is also helpful for the improvement of ot...

30 citations

Journal ArticleDOI
TL;DR: The aim of this paper is to improve edges of brain MRI by incorporating the gradient information of another contrast high-resolution image by establishing a relation model of gradient value between different contrast images to restore a high- resolution image from its input low-resolution version.
Abstract: In magnetic resonance imaging (MRI), the super-resolution technology has played a great role in improving image quality. The aim of this paper is to improve edges of brain MRI by incorporating the gradient information of another contrast high-resolution image. Multi-contrast images are assumed to possess the same gradient direction in a local pattern. We proposed to establish a relation model of gradient value between different contrast images to restore a high-resolution image from its input low-resolution version. The similarity of image patches is employed to estimate intensity parameters, leading a more accurate reconstructed image. Then, an iterative back-projection filter is applied to the reconstructed image to further increase the image quality. The new approach is verified on synthetic and real brain MRI images and achieves higher visual quality and higher objective quality criteria than the compared state-of-the-art super-resolution approaches. The gradient information of the multi-contrast MRI images is very useful. With a proper relation model, the proposed method enhances image edges in MRI image super-resolution. Improving the MRI image resolution from very low-resolution observations is challenging. We tackle this problem by first modeling the relation of gradient value in multi-contrast MRI and then performing fast supper-resolution methods. This relation model may be helpful for other MRI reconstruction problems.

30 citations

Journal ArticleDOI
TL;DR: In this article, le logiciel simule efficacement les effets classiques and quantiques, notamment le couplage scalaire, le Couplage dipolaire, la diffusion translationnelle, le decalage chimique, l amortissement radiatif, la relaxation transverse and la relaxation longitudinale.

30 citations

Journal ArticleDOI
TL;DR: In this article, a platinum/molybdenum disulfide nanoflower (Pt/MoS2) nanocomposite is synthesized through a facile method and is first applied as catalyst for ethanol oxidation reaction.

30 citations

Journal ArticleDOI
TL;DR: It is shown that intermetallic compound crystallization correlates with bonding duration, as a longer duration is applied, alumina fragmentation becomes pervasive, resulting in continuous alloy interfaces and robust bonds.

30 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations