scispace - formally typeset
Search or ask a question
Author

Zhong-Zhi Bai

Bio: Zhong-Zhi Bai is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Iterative method & System of linear equations. The author has an hindex of 49, co-authored 160 publications receiving 9600 citations. Previous affiliations of Zhong-Zhi Bai include Fudan University & Southern Federal University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied efficient iterative methods for the large sparse non-Hermitian positive definite system of linear equations based on the Hermitian and skew-hermitian splitting of the coefficient matrix.
Abstract: We study efficient iterative methods for the large sparse non-Hermitian positive definite system of linear equations based on the Hermitian and skew-Hermitian splitting of the coefficient matrix. These methods include a Hermitian/skew-Hermitian splitting (HSS) iteration and its inexact variant, the inexact Hermitian/skew-Hermitian splitting (IHSS) iteration, which employs some Krylov subspace methods as its inner iteration processes at each step of the outer HSS iteration. Theoretical analyses show that the HSS method converges unconditionally to the unique solution of the system of linear equations. Moreover, we derive an upper bound of the contraction factor of the HSS iteration which is dependent solely on the spectrum of the Hermitian part and is independent of the eigenvectors of the matrices involved. Numerical examples are presented to illustrate the effectiveness of both HSS and IHSS iterations. In addition, a model problem of a three-dimensional convection-diffusion equation is used to illustrate the advantages of our methods.

860 citations

01 Jan 2007
TL;DR: An upper bound of the contraction factor of the HSS iteration is derived which is dependent solely on the spectrum of the Hermitian part and is independent of the eigenvectors of the matrices involved.
Abstract: We study efficient iterative methods for the large sparse non-Hermitian positive definite system of linear equations based on the Hermitian and skew-Hermitian splitting of the coefficient matrix. These methods include a Hermitian/skew-Hermitian splitting (HSS) iteration and its inexact variant, the inexact Hermitian/skew-Hermitian splitting (IHSS) iteration, which employs some Krylov subspace methods as its inner iteration processes at each step of the outer HSS iteration. Theoretical analyses show that the HSS method converges unconditionally to the unique solution of the system of linear equations. Moreover, we derive an upper bound of the contraction factor of the HSS iteration which is dependent solely on the spectrum of the Hermitian part and is independent of the eigenvectors of the matrices involved. Numerical examples are presented to illustrate the effectiveness of both HSS and IHSS iterations. In addition, a model problem of a three-dimensional convection-diffusion equation is used to illustrate the advantages of our methods.

760 citations

Journal ArticleDOI
TL;DR: A class of preconditioned Hermitian/skew-Hermitian splitting iteration methods is established, showing that the new method converges unconditionally to the unique solution of the linear system.
Abstract: For the positive semidefinite system of linear equations of a block two-by-two structure, by making use of the Hermitian/skew-Hermitian splitting iteration technique we establish a class of preconditioned Hermitian/skew-Hermitian splitting iteration methods. Theoretical analysis shows that the new method converges unconditionally to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameter and the corresponding asymptotic convergence rate are computed exactly. Numerical examples further confirm the correctness of the theory and the effectiveness of the method.

465 citations

Journal ArticleDOI
TL;DR: A generalized SOR (GSOR) method is presented to obtain a framework of the relaxed splitting iterative methods for solving both symmetric and nonsymmetric augmented linear systems by using the techniques of vector extrapolation, matrix relaxation and inexact iteration.
Abstract: For the augmented system of linear equations, Golub, Wu and Yuan recently studied an SOR-like method (BIT 41(2001)71---85). By further accelerating it with another parameter, in this paper we present a generalized SOR (GSOR) method for the augmented linear system. We prove its convergence under suitable restrictions on the iteration parameters, and determine its optimal iteration parameters and the corresponding optimal convergence factor. Theoretical analyses show that the GSOR method has faster asymptotic convergence rate than the SOR-like method. Also numerical results show that the GSOR method is more effective than the SOR-like method when they are applied to solve the augmented linear system. This GSOR method is further generalized to obtain a framework of the relaxed splitting iterative methods for solving both symmetric and nonsymmetric augmented linear systems by using the techniques of vector extrapolation, matrix relaxation and inexact iteration. Besides, we also demonstrate a complete version about the convergence theory of the SOR-like method.

347 citations

Journal ArticleDOI
TL;DR: These methods involve two iteration parameters whose special choices can recover the known preconditioned HSS iteration methods, as well as yield new ones, and show that the new methods converge unconditionally to the unique solution of the saddle-point problem.
Abstract: We establish a class of accelerated Hermitian and skew-Hermitian splitting (AHSS) iteration methods for large sparse saddle-point problems by making use of the Hermitian and skew-Hermitian splitting (HSS) iteration technique. These methods involve two iteration parameters whose special choices can recover the known preconditioned HSS iteration methods, as well as yield new ones. Theoretical analyses show that the new methods converge unconditionally to the unique solution of the saddle-point problem. Moreover, the optimal choices of the iteration parameters involved and the corresponding asymptotic convergence rates of the new methods are computed exactly. In addition, theoretical properties of the preconditioned Krylov subspace methods such as GMRES are investigated in detail when the AHSS iterations are employed as their preconditioners. Numerical experiments confirm the correctness of the theory and the effectiveness of the methods.

345 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2015

3,828 citations

Journal ArticleDOI
TL;DR: A large selection of solution methods for linear systems in saddle point form are presented, with an emphasis on iterative methods for large and sparse problems.
Abstract: Large linear systems of saddle point type arise in a wide variety of applications throughout computational science and engineering. Due to their indefiniteness and often poor spectral properties, such linear systems represent a significant challenge for solver developers. In recent years there has been a surge of interest in saddle point problems, and numerous solution techniques have been proposed for this type of system. The aim of this paper is to present and discuss a large selection of solution methods for linear systems in saddle point form, with an emphasis on iterative methods for large and sparse problems.

2,253 citations

Journal ArticleDOI
TL;DR: In this article, a mathematical framework for cyber-physical systems, attacks, and monitors is proposed, and fundamental monitoring limitations from both system-theoretic and graph-based perspectives are characterized.
Abstract: Cyber-physical systems are ubiquitous in power systems, transportation networks, industrial control processes, and critical infrastructures. These systems need to operate reliably in the face of unforeseen failures and external malicious attacks. In this paper: (i) we propose a mathematical framework for cyber-physical systems, attacks, and monitors; (ii) we characterize fundamental monitoring limitations from system-theoretic and graph-theoretic perspectives; and (ii) we design centralized and distributed attack detection and identification monitors. Finally, we validate our findings through compelling examples.

1,430 citations

Posted Content
TL;DR: This paper proposes a mathematical framework for cyber-physical systems, attacks, and monitors, and describes fundamental monitoring limitations from system-theoretic and graph- theoretic perspectives and designs centralized and distributed attack detection and identification monitors.
Abstract: Cyber-physical systems integrate computation, communication, and physical capabilities to interact with the physical world and humans. Besides failures of components, cyber-physical systems are prone to malignant attacks, and specific analysis tools as well as monitoring mechanisms need to be developed to enforce system security and reliability. This paper proposes a unified framework to analyze the resilience of cyber-physical systems against attacks cast by an omniscient adversary. We model cyber-physical systems as linear descriptor systems, and attacks as exogenous unknown inputs. Despite its simplicity, our model captures various real-world cyber-physical systems, and it includes and generalizes many prototypical attacks, including stealth, (dynamic) false-data injection and replay attacks. First, we characterize fundamental limitations of static, dynamic, and active monitors for attack detection and identification. Second, we provide constructive algebraic conditions to cast undetectable and unidentifiable attacks. Third, by using the system interconnection structure, we describe graph-theoretic conditions for the existence of undetectable and unidentifiable attacks. Finally, we validate our findings through some illustrative examples with different cyber-physical systems, such as a municipal water supply network and two electrical power grids.

1,190 citations