scispace - formally typeset
Search or ask a question
Author

Zhongfei Zhang

Bio: Zhongfei Zhang is an academic researcher from Binghamton University. The author has contributed to research in topics: Image retrieval & Visual Word. The author has an hindex of 47, co-authored 280 publications receiving 8410 citations. Previous affiliations of Zhongfei Zhang include University of Warwick & University at Buffalo.


Papers
More filters
Journal ArticleDOI
TL;DR: A detailed review of the existing 2D appearance models for visual object tracking can be found in this article, where the authors decompose the problem of appearance modeling into two different processing stages: visual representation and statistical modeling.
Abstract: Visual object tracking is a significant computer vision task which can be applied to many domains, such as visual surveillance, human computer interaction, and video compression. Despite extensive research on this topic, it still suffers from difficulties in handling complex object appearance changes caused by factors such as illumination variation, partial occlusion, shape deformation, and camera motion. Therefore, effective modeling of the 2D appearance of tracked objects is a key issue for the success of a visual tracker. In the literature, researchers have proposed a variety of 2D appearance models. To help readers swiftly learn the recent advances in 2D appearance models for visual object tracking, we contribute this survey, which provides a detailed review of the existing 2D appearance models. In particular, this survey takes a module-based architecture that enables readers to easily grasp the key points of visual object tracking. In this survey, we first decompose the problem of appearance modeling into two different processing stages: visual representation and statistical modeling. Then, different 2D appearance models are categorized and discussed with respect to their composition modules. Finally, we address several issues of interest as well as the remaining challenges for future research on this topic. The contributions of this survey are fourfold. First, we review the literature of visual representations according to their feature-construction mechanisms (i.e., local and global). Second, the existing statistical modeling schemes for tracking-by-detection are reviewed according to their model-construction mechanisms: generative, discriminative, and hybrid generative-discriminative. Third, each type of visual representations or statistical modeling techniques is analyzed and discussed from a theoretical or practical viewpoint. Fourth, the existing benchmark resources (e.g., source codes and video datasets) are examined in this survey.

653 citations

Posted Content
TL;DR: This survey provides a detailed review of the existing 2D appearance models for visual object tracking and takes a module-based architecture that enables readers to easily grasp the key points ofVisual object tracking.
Abstract: Visual object tracking is a significant computer vision task which can be applied to many domains such as visual surveillance, human computer interaction, and video compression. In the literature, researchers have proposed a variety of 2D appearance models. To help readers swiftly learn the recent advances in 2D appearance models for visual object tracking, we contribute this survey, which provides a detailed review of the existing 2D appearance models. In particular, this survey takes a module-based architecture that enables readers to easily grasp the key points of visual object tracking. In this survey, we first decompose the problem of appearance modeling into two different processing stages: visual representation and statistical modeling. Then, different 2D appearance models are categorized and discussed with respect to their composition modules. Finally, we address several issues of interest as well as the remaining challenges for future research on this topic. The contributions of this survey are four-fold. First, we review the literature of visual representations according to their feature-construction mechanisms (i.e., local and global). Second, the existing statistical modeling schemes for tracking-by-detection are reviewed according to their model-construction mechanisms: generative, discriminative, and hybrid generative-discriminative. Third, each type of visual representations or statistical modeling techniques is analyzed and discussed from a theoretical or practical viewpoint. Fourth, the existing benchmark resources (e.g., source code and video datasets) are examined in this survey.

605 citations

Proceedings ArticleDOI
25 Jun 2006
TL;DR: A general model, the collective factorization on related matrices, is proposed for multi-type relational data clustering and a novel algorithm is derived, the spectral relational clustering, to cluster multi- type interrelated data objects simultaneously.
Abstract: Clustering on multi-type relational data has attracted more and more attention in recent years due to its high impact on various important applications, such as Web mining, e-commerce and bioinformatics. However, the research on general multi-type relational data clustering is still limited and preliminary. The contribution of the paper is three-fold. First, we propose a general model, the collective factorization on related matrices, for multi-type relational data clustering. The model is applicable to relational data with various structures. Second, under this model, we derive a novel algorithm, the spectral relational clustering, to cluster multi-type interrelated data objects simultaneously. The algorithm iteratively embeds each type of data objects into low dimensional spaces and benefits from the interactions among the hidden structures of different types of data objects. Extensive experiments demonstrate the promise and effectiveness of the proposed algorithm. Third, we show that the existing spectral clustering algorithms can be considered as the special cases of the proposed model and algorithm. This demonstrates the good theoretic generality of the proposed model and algorithm.

406 citations

Journal ArticleDOI
TL;DR: Multi-view representation learning has become a rapidly growing direction in machine learning and data mining areas as mentioned in this paper, and a comprehensive survey of multi-view representations can be found in this paper.
Abstract: Recently, multi-view representation learning has become a rapidly growing direction in machine learning and data mining areas. This paper introduces two categories for multi-view representation learning: multi-view representation alignment and multi-view representation fusion. Consequently, we first review the representative methods and theories of multi-view representation learning based on the perspective of alignment, such as correlation-based alignment. Representative examples are canonical correlation analysis (CCA) and its several extensions. Then, from the perspective of representation fusion, we investigate the advancement of multi-view representation learning that ranges from generative methods including multi-modal topic learning, multi-view sparse coding, and multi-view latent space Markov networks, to neural network-based methods including multi-modal autoencoders, multi-view convolutional neural networks, and multi-modal recurrent neural networks. Further, we also investigate several important applications of multi-view representation learning. Overall, this survey aims to provide an insightful overview of theoretical foundation and state-of-the-art developments in the field of multi-view representation learning and to help researchers find the most appropriate tools for particular applications.

328 citations

Proceedings Article
01 Oct 2008
TL;DR: The proposed model introduces the concept of mapping function to make the different patterns from different pattern spaces comparable and hence an optimal pattern can be learned from the multiple patterns of multiple representations.
Abstract: Multiple view data, which have multiple representations from different feature spaces or graph spaces, arise in various data mining applications such as information retrieval, bioinformatics and social network analysis. Since different representations could have very different statistical properties, how to learn a consensus pattern from multiple representations is a challenging problem. In this paper, we propose a general model for multiple view unsupervised learning. The proposed model introduces the concept of mapping function to make the different patterns from different pattern spaces comparable and hence an optimal pattern can be learned from the multiple patterns of multiple representations. Under this model, we formulate two specific models for two important cases of unsupervised learning, clustering and spectral dimensionality reduction; we derive an iterating algorithm for multiple view clustering, and a simple algorithm providing a global optimum to multiple spectral dimensionality reduction. We also extend the proposed model and algorithms to evolutionary clustering and unsupervised learning with side information. Empirical evaluations on both synthetic and real data sets demonstrate the effectiveness of the proposed model and algorithms.

248 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

9,057 citations