scispace - formally typeset
Search or ask a question
Author

Zhongjie Ren

Bio: Zhongjie Ren is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Light-emitting diode & Quantum efficiency. The author has an hindex of 6, co-authored 15 publications receiving 180 citations. Previous affiliations of Zhongjie Ren include University of Science and Technology of China & King Abdullah University of Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors summarize the recent progress on various energy band designs and engineering of DUV LEDs, with particular of interest paid on the various approaches in band engineering of the electron blocking layer, quantum well, quantum barrier and the implementation of many novel structures such as tunnel junctions, ultrathin quantum heterostructures to enhance their efficiency.
Abstract: III-nitride deep ultraviolet (DUV) light-emitting diodes (LEDs) are identified as the promising candidate for energy-efficient, environment-friendly and robust UV lighting source in the application of water/air purification, sterilization, and bio-sensing. However, the state-of-art DUV LED performance is far from satisfaction for commercialization owing to its low internal quantum efficiency, large current leakage and efficiency droop at high current injection, etc. Extensive efforts have been devoted to properly designing the band structures of such luminescent devices to enhance their output power. In this review, we summarize the recent progress on various energy band designs and engineering of DUV LEDs, with particular of interest is paid on the various approaches in band engineering of the electron-blocking layer, quantum well, quantum barrier and the implementation of many novel structures such as tunnel junctions, ultrathin quantum heterostructures to enhance their efficiency. Those inspirational approaches pave the way towards the next generation of greener and efficient UV sources for practical applications.

88 citations

Journal ArticleDOI
TL;DR: In this article, the electrical and optical properties of micro-scale AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) emitting at ∼275nm were carried out, with an emphasis on fabricated devices having a diameter of 300, 200, 100, 50, and 20 µm, respectively.
Abstract: The investigation of electrical and optical properties of micro-scale AlGaN deep ultraviolet (DUV) light-emitting diodes (LEDs) emitting at ∼275nm was carried out, with an emphasis on fabricated devices having a diameter of 300, 200, 100, 50, and 20 µm, respectively. It was revealed that the LED chips with smaller mesa areas deliver considerably higher light output power density; meanwhile, they can sustain a higher current density, which is mainly attributed to the enhanced current spreading uniformity in micro-scale chips. Importantly, when the diameter of LED chips decreases from 300 µm to 20 µm, the peak external quantum efficiency (EQE) increases by 20%, and the EQE peak current density can be boosted from 8.85A/cm2 and 99.52A/cm2. Moreover, we observed a longer wavelength emission with enlarged full-width at half-maximum (FWHM) in the LEDs with smaller chip sizes because of the self-heating effect at high current injection. These experimental observations provide insights into the design and fabrication of high-efficiency micro-LEDs emitting in the DUV regime with different device geometries for various future applications.

60 citations

Journal ArticleDOI
TL;DR: In this article, a novel nanowire structure adopting a graded-index separate confinement heterostructure (GRINSCH) in which the active region is sandwiched between two compositionally graded AlGaN layers, namely, a GRINSCH diode, is proposed.
Abstract: High-density dislocations in materials and poor electrical conductivity of p-type AlGaN layers constrain the performance of the ultraviolet light emitting diodes and lasers at shorter wavelengths. To address those technical challenges, we design, grow, and fabricate a novel nanowire structure adopting a graded-index separate confinement heterostructure (GRINSCH) in which the active region is sandwiched between two compositionally graded AlGaN layers, namely, a GRINSCH diode. Calculated electronic band diagram and carrier concentrations show an automatic formation of a p–n junction with electron and hole concentrations of ∼1018 /cm3 in the graded AlGaN layers without intentional doping. The transmission electron microscopy experiment confirms the composition variation in the axial direction of the graded AlGaN nanowires. Significantly lower turn-on voltage of 6.5 V (reduced by 2.5 V) and smaller series resistance of 16.7 Ω (reduced by nearly four times) are achieved in the GRINSCH diode, compared with the ...

48 citations

Journal ArticleDOI
TL;DR: It is found that a relatively thinner graded QB layer could further boost the LED performance because of the increased carrier concentrations and enhanced electron and hole wave function overlap in the QW, triggering a much higher radiative recombination efficiency.
Abstract: AlGaN-based deep-ultraviolet light-emitting diodes (DUV LEDs) still suffer from poor quantum efficiency and low optical power. In this work, we proposed a DUV LED structure that includes five unique AlxGa1-xN quantum barriers (QBs); Each QB has a linear-increment of Al composition by 0.03 along the growth direction, unlike those commonly used flat QBs in conventional LEDs. As a result, the electron and hole concentration in the active region was considerably increased, attributing to the success of the electron blocking effect and enhanced hole injection efficiency. Importantly, the optical power was remarkably improved by 65.83% at the injection current of 60 mA. After in-depth device optimization, we found that a relatively thinner graded QB layer could further boost the LED performance because of the increased carrier concentrations and enhanced electron and hole wave function overlap in the QW, triggering a much higher radiative recombination efficiency. Hence, the proposed graded QBs, which have a continuous increment of Al composition along the growth direction, provide us with an effective solution to boost light output power in the pursuit of high-performance DUV emitters.

43 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that electron overflow can be significantly impacted by the slope variation of the quantum barrier conduction and valence bands, which in turn influence radiative recombination and optical output power.
Abstract: AlGaN-based deep UV (DUV) LEDs generally employ a p-type electron blocking layer (EBL) to suppress electron overflow. However, Al-rich III-nitride EBL can result in challenging p-doping and large valence band barrier for hole injection as well as epitaxial complexity. As a result, wall plug efficiency (WPE) can be compromised. Our systematic studies of band diagram and carrier concentration reveal that carrier concentrations in the quantum well and electron overflow can be significantly impacted because of the slope variation of the quantum barrier (QB) conduction and valence bands, which in turn influence radiative recombination and optical output power. Remarkably, grading the Al composition from 0.60 to 0.70 for the 12-nm-thick AlGaN QB of the DUV LED without the EBL can lead to 13.5% higher output power and similar level of overflown electron concentration (~1 × 10 15 /cm 3 ) as opposed to the conventional DUV LED with the p-type EBL. This paradigm is significant for the pursuit of higher WPE or shorter emission wavelength for DUV LEDs and lasers, as it provides a new direction for addressing electron overflow and hole injection issues.

34 citations


Cited by
More filters
Journal ArticleDOI
Enrique Barrigón1, Magnus Heurlin1, Zhaoxia Bi1, Bo Monemar1, Lars Samuelson1 
TL;DR: The way in which several innovative synthesis methods constitute the basis for the realization of highly controlled nanowires is reviewed, and one of how the different families ofnanowires can contribute to applications is combined.
Abstract: Low-dimensional semiconductor materials structures, where nanowires are needle-like one-dimensional examples, have developed into one of the most intensely studied fields of science and technology. The subarea described in this review is compound semiconductor nanowires, with the materials covered limited to III-V materials (like GaAs, InAs, GaP, InP,...) and III-nitride materials (GaN, InGaN, AlGaN,...). We review the way in which several innovative synthesis methods constitute the basis for the realization of highly controlled nanowires, and we combine this perspective with one of how the different families of nanowires can contribute to applications. One reason for the very intense research in this field is motivated by what they can offer to main-stream semiconductors, by which ultrahigh performing electronic (e.g., transistors) and photonic (e.g., photovoltaics, photodetectors or LEDs) technologies can be merged with silicon and CMOS. Other important aspects, also covered in the review, deals with synthesis methods that can lead to dramatic reduction of cost of fabrication and opportunities for up-scaling to mass production methods.

173 citations

Journal ArticleDOI
TL;DR: In this paper, high crystalline quality InGaN/AlGaN multiple quantum structures on patterned sapphire with silica array (PSSA) have been successfully demonstrated.

135 citations

Journal ArticleDOI
TL;DR: This work constructs, for the first time, solar-blind PEC PDs based on self-assembled AlGaN nanostructures on silicon, demonstrating strikingly high responsivity of 45 mA/W and record fast response/recovery time of 47/20 ms without external power source.
Abstract: Energy-saving photodetectors are the key components in future photonic systems. Particularly, self-powered photoelectrochemical-type photodetectors (PEC-PDs), which depart completely from the classical solid-state junction device, have lately intrigued intensive interest to meet next-generation power-independent and environment-sensitive photodetection. Herein, we construct, for the first time, solar-blind PEC PDs based on self-assembled AlGaN nanostructures on silicon. Importantly, with the proper surface platinum (Pt) decoration, a significant boost of photon responsivity by more than an order of magnitude was achieved in the newly built Pt/AlGaN nanoarchitectures, demonstrating strikingly high responsivity of 45 mA/W and record fast response/recovery time of 47/20 ms without external power source. Such high solar-blind photodetection originates from the unparalleled material quality, fast interfacial kinetics, as well as high carrier separation efficiency which suggests that embracement of defect-free wide-bandgap semiconductor nanostructures with appropriate surface decoration offers an unprecedented opportunity for designing future energy-efficient and large-scale optoelectronic systems on a silicon platform.

90 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize the recent progress on various energy band designs and engineering of DUV LEDs, with particular of interest paid on the various approaches in band engineering of the electron blocking layer, quantum well, quantum barrier and the implementation of many novel structures such as tunnel junctions, ultrathin quantum heterostructures to enhance their efficiency.
Abstract: III-nitride deep ultraviolet (DUV) light-emitting diodes (LEDs) are identified as the promising candidate for energy-efficient, environment-friendly and robust UV lighting source in the application of water/air purification, sterilization, and bio-sensing. However, the state-of-art DUV LED performance is far from satisfaction for commercialization owing to its low internal quantum efficiency, large current leakage and efficiency droop at high current injection, etc. Extensive efforts have been devoted to properly designing the band structures of such luminescent devices to enhance their output power. In this review, we summarize the recent progress on various energy band designs and engineering of DUV LEDs, with particular of interest is paid on the various approaches in band engineering of the electron-blocking layer, quantum well, quantum barrier and the implementation of many novel structures such as tunnel junctions, ultrathin quantum heterostructures to enhance their efficiency. Those inspirational approaches pave the way towards the next generation of greener and efficient UV sources for practical applications.

88 citations