scispace - formally typeset
Search or ask a question
Author

Zhongping Zhang

Bio: Zhongping Zhang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Molecular imprinting & Fluorescence. The author has an hindex of 49, co-authored 140 publications receiving 8748 citations. Previous affiliations of Zhongping Zhang include University of Science and Technology of China & Anhui University.


Papers
More filters
Journal ArticleDOI
TL;DR: A critical value of shell thickness for the maximum rebindingcapacity was determined by testing the evolution of rebinding capacity with shell thickness, which provides new insights into the effectiveness of molecular imprinting and the form of imprinted materials.
Abstract: This paper reports a surface functional monomer-directing strategy for the highly dense imprinting of 2,4,6-trinitrotoluene (TNT) molecules at the surface of silica nanoparticles. It has been demonstrated that the vinyl functional monomer layer of the silica surface can not only direct the selective occurrence of imprinting polymerization at the surface of silica through the copolymerization of vinyl end groups with functional monomers, but also drive TNT templates into the formed polymer shells through the charge-transfer complexing interactions between TNT and the functional monomer layer. The two basic processes lead to the formation of uniform core−shell TNT-imprinted nanoparticles with a controllable shell thickness and a high density of effective recognition sites. The high capacity and fast kinetics to uptake TNT molecules show that the density of effective imprinted sites in the nanoshells is nearly 5 times that of traditional imprinted particles. A critical value of shell thickness for the maximu...

533 citations

Journal ArticleDOI
TL;DR: A fingerprint lifting technique has been innovated to visualize trace TNT particulates on various surfaces by the appearance of a different color against a yellow-green background under a UV lamp, showing high selectivity and sensitivity with a detection limit as low as 5 ng/mm(2) on a manila envelope and the attribute of being seen with the naked eye.
Abstract: To detect trace trinitrotoluene (TNT) explosives deposited on various surfaces instantly and on-site still remains a challenge for homeland security needs against terrorism. This work demonstrates a new concept and its utility for visual detection of TNT particulates on various package materials. The concept takes advantages of the superior fluorescent properties of quantum dots (QDs) for visual signal output via ratiometric fluorescence, the feasibility of surface grafting of QDs for chemical recognition of TNT, and the ease of operation of the fingerprint lifting technique. Two differently sized CdTe QDs emitting red and green fluorescences, respectively, have been hybridized by embedding the red-emitting one in silica nanoparticles and covalently linking the green-emitting one to the silica surface, respectively, to form a dual-emissive fluorescent hybrid nanoparticle. The fluorescence of red QDs in the silica nanoparticles stays constant, whereas the green QDs functionalized with polyamine can selectively bind TNT by the formation of Meisenheimer complex, leading to the green fluorescence quenching due to resonance energy transfer. The variations of the two fluorescence intensity ratios display continuous color changes from yellow-green to red upon exposure to different amounts of TNT. By immobilization of the probes on a piece of filter paper, a fingerprint lifting technique has been innovated to visualize trace TNT particulates on various surfaces by the appearance of a different color against a yellow-green background under a UV lamp. This method shows high selectivity and sensitivity with a detection limit as low as 5 ng/mm(2) on a manila envelope and the attribute of being seen with the naked eye.

509 citations

Journal ArticleDOI
TL;DR: The shell thickness-dependent Raman enhancement of silver-coated gold nanoparticles (Au@Ag NPs) for the identification and detection of pesticide residues at various fruit peels is reported.
Abstract: Here, we report the shell thickness-dependent Raman enhancement of silver-coated gold nanoparticles (Au@Ag NPs) for the identification and detection of pesticide residues at various fruit peels. The Raman enhancement of Au@Ag NPs to a large family of sulfur-containing pesticides is ∼2 orders of magnitude stronger than those of bare Au and Ag NPs, and there is a strong dependence of the Raman enhancement on the Ag shell thickness. It has been shown for the first time that the huge Raman enhancement is contributed by individual Au@Ag NPs rather than aggregated Au@Ag NPs with “hot spots” among the neighboring NPs. Therefore, the Au@Ag NPs with excellent individual-particle enhancement can be exploited as stand-alone-particle Raman amplifiers for the surface identification and detection of pesticide residues at various peels of fruits, such as apple, grape, mango, pear, and peach. By casting the particle sensors onto fruit peels, several types of pesticide residues (e.g., thiocarbamate and organophosphorous c...

370 citations

Journal ArticleDOI
TL;DR: The ion-doped nanocrystal sensors reported here show a remarkable air/solution stability, high quantum yield, and strong analyte affinity and, therefore, are well-suited for detecting the ultratrace TNT and distinguishing different nitro compounds.
Abstract: Mn2+-doped ZnS nanocrystals with an amine-capping layer have been synthesized and used for the fluorescence detection of ultratrace 2,4,6-trinitrotoluene (TNT) by quenching the strong orange Mn2+ photoluminescence. The organic amine-capped nanocrystals can bind TNT species from solution and atmosphere by the acid−base pairing interaction between electron-rich amino ligands and electron-deficient aromatic rings. The resultant TNT anions bound onto the amino monolayer can efficiently quench the Mn2+ photoluminescence through the electron transfer from the conductive band of ZnS to the lowest unoccupied molecular orbital (LUMO) of TNT anions. The amino ligands provide an amplified response to the binding events of nitroaromatic compounds by the 2- to ∼5-fold increase in quenching constants. Moreover, a large difference in quenching efficiency was observed for different types of nitroaromatic analytes, dependent on the affinity of nitro analytes to the amino monolayer and their electron-accepting abilities. T...

343 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The advent of AuNP as a sensory element provided a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.
Abstract: Detection of chemical and biological agents plays a fundamental role in biomedical, forensic and environmental sciences1–4 as well as in anti bioterrorism applications.5–7 The development of highly sensitive, cost effective, miniature sensors is therefore in high demand which requires advanced technology coupled with fundamental knowledge in chemistry, biology and material sciences.8–13 In general, sensors feature two functional components: a recognition element to provide selective/specific binding with the target analytes and a transducer component for signaling the binding event. An efficient sensor relies heavily on these two essential components for the recognition process in terms of response time, signal to noise (S/N) ratio, selectivity and limits of detection (LOD).14,15 Therefore, designing sensors with higher efficacy depends on the development of novel materials to improve both the recognition and transduction processes. Nanomaterials feature unique physicochemical properties that can be of great utility in creating new recognition and transduction processes for chemical and biological sensors15–27 as well as improving the S/N ratio by miniaturization of the sensor elements.28 Gold nanoparticles (AuNPs) possess distinct physical and chemical attributes that make them excellent scaffolds for the fabrication of novel chemical and biological sensors (Figure 1).29–36 First, AuNPs can be synthesized in a straightforward manner and can be made highly stable. Second, they possess unique optoelectronic properties. Third, they provide high surface-to-volume ratio with excellent biocompatibility using appropriate ligands.30 Fourth, these properties of AuNPs can be readily tuned varying their size, shape and the surrounding chemical environment. For example, the binding event between recognition element and the analyte can alter physicochemical properties of transducer AuNPs, such as plasmon resonance absorption, conductivity, redox behavior, etc. that in turn can generate a detectable response signal. Finally, AuNPs offer a suitable platform for multi-functionalization with a wide range of organic or biological ligands for the selective binding and detection of small molecules and biological targets.30–32,36 Each of these attributes of AuNPs has allowed researchers to develop novel sensing strategies with improved sensitivity, stability and selectivity. In the last decade of research, the advent of AuNP as a sensory element provided us a broad spectrum of innovative approaches for the detection of metal ions, small molecules, proteins, nucleic acids, malignant cells, etc. in a rapid and efficient manner.37 Figure 1 Physical properties of AuNPs and schematic illustration of an AuNP-based detection system. In this current review, we have highlighted the several synthetic routes and properties of AuNPs that make them excellent probes for different sensing strategies. Furthermore, we will discuss various sensing strategies and major advances in the last two decades of research utilizing AuNPs in the detection of variety of target analytes including metal ions, organic molecules, proteins, nucleic acids, and microorganisms.

3,879 citations

Journal ArticleDOI
TL;DR: This review intends to provide an update of work published since then and focuses on the photoluminescence properties of MOFs and their possible utility in chemical and biological sensing and detection.
Abstract: Metal–organic frameworks (MOFs) are a unique class of crystalline solids comprised of metal cations (or metal clusters) and organic ligands that have shown promise for a wide variety of applications Over the past 15 years, research and development of these materials have become one of the most intensely and extensively pursued areas A very interesting and well-investigated topic is their optical emission properties and related applications Several reviews have provided a comprehensive overview covering many aspects of the subject up to 2011 This review intends to provide an update of work published since then and focuses on the photoluminescence (PL) properties of MOFs and their possible utility in chemical and biological sensing and detection The spectrum of this review includes the origin of luminescence in MOFs, the advantages of luminescent MOF (LMOF) based sensors, general strategies in designing sensory materials, and examples of various applications in sensing and detection

3,485 citations

Journal ArticleDOI
TL;DR: This review presents an overview of silver nanoparticles (Ag NPs) preparation by green synthesis approaches that have advantages over conventional methods involving chemical agents associated with environmental toxicity.

3,290 citations

Journal ArticleDOI
TL;DR: A facile and highoutput strategy for the fabrication of CDs, which is suitable for industrial-scale production and is almost equal to fluorescent dyes, is discussed.
Abstract: Fluorescent carbon-based materials have drawn increasing attention in recent years owing to exceptional advantages such as high optical absorptivity, chemical stability, biocompatibility, and low toxicity. These materials primarily include carbon dots (CDs), nanodiamonds, carbon nanotubes, fullerene, and fluorescent graphene. The superior properties of fluorescent carbon-based materials distinguish them from traditional fluorescent materials, and make them promising candidates for numerous exciting applications, such as bioimaging, medical diagnosis, catalysis, and photovoltaic devices. Among all of these materials, CDs have drawn the most extensive notice, owing to their early discovery and adjustable parameters. However, many scientific issues with CDs still await further investigation. Currently, a broad series of methods for obtaining CD-based materials have been developed, but efficient one-step strategies for the fabrication of CDs on a large scale are still a challenge in this field. Current synthetic methods are mainly deficient in accurate control of lateral dimensions and the resulting surface chemistry, as well as in obtaining fluorescent materials with high quantum yields (QY). Moreover, it is important to expand these kinds of materials to novel applications. Herein, a facile and highoutput strategy for the fabrication of CDs, which is suitable for industrial-scale production (yield is ca. 58%), is discussed. The QY was as high as ca. 80%, which is the highest value recorded for fluorescent carbon-based materials, and is almost equal to fluorescent dyes. The polymer-like CDs were converted into carbogenic CDs by a change from low to high synthesis temperature. The photoluminescence (PL) mechanism (high QY/PL quenching) was investigated in detail by ultrafast spectroscopy. The CDs were applied as printing ink on the macro/micro scale and nanocomposites were also prepared by polymerizing CDs with certain polymers. Additionally, the CDs could be utilized as a biosensor reagent for the detection of Fe in biosystems. The CDs were prepared by a hydrothermal method, which is described in the Supporting Information (Figure 1a; see also the Supporting Information, Figure S1). The reaction was conducted by first condensing citric acid and ethylenediamine, whereupon they formed polymer-like CDs, which were then carbonized to form the CDs. The morphology and structure of CDs were confirmed by analysis. Figure 1b shows transmission electron microscopy (TEM) images of the CDs, which can be seen to have a uniform dispersion without apparent aggregation and particle diameters of 2–6 nm. The sizes of CDs were also measured by atomic force microscopy (AFM; Figure S2), and the average height was 2.81 nm. From the high-resolution TEM, most particles are observed to be amorphous carbon particles without any lattices; rare particles possess well-resolved lattice fringes. With such a low carbon-lattice-structure content, no obvious D or G bands were detected in the Raman spectra of the CDs (Figure S3). The XRD patterns of the CDs (Figure 1c) also displayed a broad peak centered at 258 (0.34 nm), which is also attributed to highly disordered carbon atoms. Moreover, NMR spectroscopy (H and C) was employed to distinguish sp-hybridized carbon atoms from sp-hybridized carbon atoms (Figure S4). In the H NMR spectrum, sp carbons were detected. In the C NMR spectrum, signals in the range of 30–45 ppm, which correspond to aliphatic (sp) carbon atoms, and signals from 100–185 ppm, which are indicative of sp carbon atoms, were observed. Signals in the range of 170– 185 ppm, which correspond to carboxyl/amide groups, were also present. In the FTIR analysis of CDs, the following were observed: stretching vibrations of C OH at 3430 cm 1 and C H at 2923 cm 1 and 2850 cm , asymmetric stretching vibrations of C-NH-C at 1126 cm , bending vibrations of N H at 1570 cm , and the vibrational absorption band of C=O at 1635 cm 1 (Figure S5). Moreover, the surface groups were also investigated by XPS analysis (Figure 1d). C1s analysis revealed three different types of carbon atoms: graphitic or aliphatic (C=C and C C), oxygenated, and nitrous (Table S1). In the UV/Vis spectra, the peak was focused on 344 nm in an aqueous solution of CDs. In the fluorescence spectra, CDs have optimal excitation and emission wavelengths at 360 nm and 443 nm, and show a blue color under a hand-held UV lamp (Figure 2a). Excitation-dependent PL behavior was [*] S. Zhu, Q. Meng, Prof. J. Zhang, Y. Song, Prof. K. Zhang, Prof. B. Yang State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, 130012 (P. R. China) E-mail: byangchem@jlu.edu.cn

3,095 citations