scispace - formally typeset
Search or ask a question
Author

Zhongqin Tian

Bio: Zhongqin Tian is an academic researcher from Peking Union Medical College. The author has contributed to research in topics: Interferon & Medicine. The author has an hindex of 2, co-authored 2 publications receiving 383 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This study shows that Sars-CoV-2 perturbs host innate immune response via both its structural and nonstructural proteins, and thus provides insights into the pathogenesis of SARS-Cov-2.
Abstract: The pandemic of COVID-19 has posed an unprecedented threat to global public health. However, the interplay between the viral pathogen of COVID-19, SARS-CoV-2, and host innate immunity is poorly understood. Here we show that SARS-CoV-2 induces overt but delayed type-I interferon (IFN) responses. By screening 23 viral proteins, we find that SARS-CoV-2 NSP1, NSP3, NSP12, NSP13, NSP14, ORF3, ORF6 and M protein inhibit Sendai virus-induced IFN-β promoter activation, whereas NSP2 and S protein exert opposite effects. Further analyses suggest that ORF6 inhibits both type I IFN production and downstream signaling, and that the C-terminus region of ORF6 is critical for its antagonistic effect. Finally, we find that IFN-β treatment effectively blocks SARS-CoV-2 replication. In summary, our study shows that SARS-CoV-2 perturbs host innate immune response via both its structural and nonstructural proteins, and thus provides insights into the pathogenesis of SARS-CoV-2.

720 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors reported that SARS-CoV-2 nsp12, the viral RNA-dependent RNA polymerase (RdRp), suppresses host antiviral responses.
Abstract: SARS-CoV-2 is the pathogenic agent of COVID-19, which has evolved into a global pandemic. Compared with some other respiratory RNA viruses, SARS-CoV-2 is a poor inducer of type I interferon (IFN). Here, we report that SARS-CoV-2 nsp12, the viral RNA-dependent RNA polymerase (RdRp), suppresses host antiviral responses. SARS-CoV-2 nsp12 attenuated Sendai virus (SeV)- or poly(I:C)-induced IFN-β promoter activation in a dose-dependent manner. It also inhibited IFN promoter activation triggered by RIG-I, MDA5, MAVS, and IRF3 overexpression. Nsp12 did not impair IRF3 phosphorylation but suppressed the nuclear translocation of IRF3. Mutational analyses suggested that this suppression was not dependent on the polymerase activity of nsp12. Given these findings, our study reveals that SARS-CoV-2 RdRp can antagonize host antiviral innate immunity and thus provides insights into viral pathogenesis.

80 citations

Posted ContentDOI
16 May 2022-medRxiv
TL;DR: Nucleic acid testing-based method aiming to detect and discriminate SARS-CoV-2 VOCs by combining RT-RPA and CRISPR-Cas12a detecting assays (RRCd) is reported, demonstrating 100% accuracy in clinical samples with Ct <33.
Abstract: Timely and accurate detection of SARS-CoV-2 variants of concern (VOCs) is urgently needed for pandemic surveillance and control. However, current methods are limited by the low sensitivity, long turn-around time or high cost. Here, we report a nucleic acid testing-based method aiming to detect and discriminate SARS-CoV-2 VOCs by combining RT-RPA and CRISPR-Cas12a detecting assays (RRCd). With a detection limit of 10 copies RNA/reaction, RRCd was validated in 204 clinical samples, showing 99% positive predictive agreement and 100% negative predictive agreement, respectively. Critically, using specific crRNAs, representatives of single nucleotide polymorphisms and small deletions in SARS-CoV-2 VOCs including N501Y, T478K and {Delta}H69-V70 were discriminated by RRCd, demonstrating 100% accuracy in clinical samples with Ct <33. The method completes within 65 min and could offer visible results without using any electrical devices, which may facilitate point-of-care testing of SARS-CoV-2 and its variants.

1 citations

Journal ArticleDOI
TL;DR: In this article , the major histocompatibility complex class II chaperone, CD74, inhibits EV-D68 replication in infected cells by interacting with the second hydrophobic region of 2B protein.
Abstract: As an emerging non-polio enterovirus, EV-D68 is widely spread all over the world and causes severe neurological and respiratory illnesses. Here, we report that CD74 inhibits viral replication in infected cells by targeting 2B protein of EV-D68, while EV-D68 attenuates the antiviral role of CD74 through 3Cpro cleavage. The equilibrium between CD74 and EV-D68 3Cpro determines the outcome of viral infection. ABSTRACT Enterovirus D68 (EV-D68) is a member of the species Enterovirus D in the genus Enterovirus of the family Picornaviridae. As an emerging non-polio enterovirus, EV-D68 is widely spread all over the world and causes severe neurological and respiratory illnesses. Although the intrinsic restriction factors in the cell provide a frontline defense, the molecular nature of virus-host interactions remains elusive. Here, we provide evidence that the major histocompatibility complex class II chaperone, CD74, inhibits EV-D68 replication in infected cells by interacting with the second hydrophobic region of 2B protein, while EV-D68 attenuates the antiviral role of CD74 through 3Cpro cleavage. 3Cpro cleaves CD74 at Gln-125. The equilibrium between CD74 and EV-D68 3Cpro determines the outcome of viral infection. IMPORTANCE As an emerging non-polio enterovirus, EV-D68 is widely spread all over the world and causes severe neurological and respiratory illnesses. Here, we report that CD74 inhibits viral replication in infected cells by targeting 2B protein of EV-D68, while EV-D68 attenuates the antiviral role of CD74 through 3Cpro cleavage. The equilibrium between CD74 and EV-D68 3Cpro determines the outcome of viral infection.

Cited by
More filters
Journal ArticleDOI
TL;DR: Advances in animal models that are important for understanding the pathogenesis of SARS-CoV-2, vaccine development, and therapeutic testing are presented and comparisons are made from studies with SARS to provide further perspectives on COVID-19 and draw inferences for future investigations.

712 citations

Journal ArticleDOI
TL;DR: Insight is provided on SARS-CoV-2 evasion of IFN-I response and its potential impact on viral transmission and pathogenesis.

645 citations

Journal ArticleDOI
01 Apr 2021-Cell
TL;DR: In this article, a conceptual framework for the interaction of the human innate immune system with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was provided to link the clinical observations with experimental findings that have been made during the first year of the pandemic.

422 citations

Journal ArticleDOI
TL;DR: Most COVID-19 vaccines have been designed to elicit immune responses, ideally neutralizing antibodies (NAbs), against the SARS-CoV-2 spike protein this article.
Abstract: Most COVID-19 vaccines are designed to elicit immune responses, ideally neutralizing antibodies (NAbs), against the SARS-CoV-2 spike protein. Several vaccines, including mRNA, adenoviral-vectored, protein subunit and whole-cell inactivated virus vaccines, have now reported efficacy in phase III trials and have received emergency approval in many countries. The two mRNA vaccines approved to date show efficacy even after only one dose, when non-NAbs and moderate T helper 1 cell responses are detectable, but almost no NAbs. After a single dose, the adenovirus vaccines elicit polyfunctional antibodies that are capable of mediating virus neutralization and of driving other antibody-dependent effector functions, as well as potent T cell responses. These data suggest that protection may require low levels of NAbs and might involve other immune effector mechanisms including non-NAbs, T cells and innate immune mechanisms. Identifying the mechanisms of protection as well as correlates of protection is crucially important to inform further vaccine development and guide the use of licensed COVID-19 vaccines worldwide.

367 citations

Journal ArticleDOI
TL;DR: SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs).
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.

365 citations