scispace - formally typeset
Search or ask a question
Author

Zhongxiang Zhang

Bio: Zhongxiang Zhang is an academic researcher from Hefei Normal University. The author has contributed to research in topics: Porous medium & Electromagnetic shielding. The author has an hindex of 1, co-authored 1 publications receiving 85 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a combination of hot-pressing and selective etching was proposed to manufacture porous nanocomposites based on poly(vinylidene fluoride) (PVDF) and multiwall carbon nanotubes (MWCNTs) with three-dimensional(3D) networks.

113 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a lightweight conductive porous graphene/thermoplastic polyurethane (TPU) foams with ultrahigh compressibility was successfully fabricated by using the thermal induced phase separation (TISP) technique.
Abstract: Lightweight conductive porous graphene/thermoplastic polyurethane (TPU) foams with ultrahigh compressibility were successfully fabricated by using the thermal induced phase separation (TISP) technique. The density and porosity of the foams were calculated to be about 0.11 g cm−3 and 90% owing to the porous structure. Compared with pure TPU foams, the addition of graphene could effectively increase the thickness of the cell wall and hinder the formation of small holes, leading to a robust porous structure with excellent compression property. Meanwhile, the cell walls with small holes and a dendritic structure were observed due to the flexibility of graphene, endowing the foam with special positive piezoresistive behaviors and peculiar response patterns with a deflection point during the cyclic compression. This could effectively enhance the identifiability of external compression strain when used as piezoresistive sensors. In addition, larger compression sensitivity was achieved at a higher compression rate. Due to high porosity and good elasticity of TPU, the conductive foams demonstrated good compressibility and stable piezoresistive sensing signals at a strain of up to 90%. During the cyclic piezoresistive sensing test under different compression strains, the conductive foam exhibited good recoverability and reproducibility after the stabilization of cyclic loading. All these suggest that the fabricated conductive foam possesses great potential to be used as lightweight, flexible, highly sensitive, and stable piezoresistive sensors.

546 citations

Journal ArticleDOI
TL;DR: Benefiting from the excellent electrical conductivity, ultralight porous structure, and effective charge delocalization, the composites deliver remarkable EMI shielding performance with a shielding effectiveness (SE) of 91.9 dB and a specific SE of 3124 dB·cm3/g, both of which are the highest among those reported in the literature for carbon-based polymer composites.
Abstract: Ultralight, high-performance electromagnetic interference (EMI) shielding graphene foam (GF)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) composites are developed by drop coating of PEDOT:PSS on cellular-structured, freestanding GFs. To enhance the wettability and the interfacial bonds with PEDOT:PSS, GFs are functionalized with 4-dodecylbenzenesulfonic acid. The GF/PEDOT:PSS composites possess an ultralow density of 18.2 × 10–3 g/cm3 and a high porosity of 98.8%, as well as an enhanced electrical conductivity by almost 4 folds from 11.8 to 43.2 S/cm after the incorporation of the conductive PEDOT:PSS. Benefiting from the excellent electrical conductivity, ultralight porous structure, and effective charge delocalization, the composites deliver remarkable EMI shielding performance with a shielding effectiveness (SE) of 91.9 dB and a specific SE (SSE) of 3124 dB·cm3/g, both of which are the highest among those reported in the literature for carbon-based polymer composites. The excelle...

393 citations

Journal ArticleDOI
15 Jun 2021-Carbon
TL;DR: In this paper, the authors reviewed conductive polymer composites (CPC) with multiple interfaces which have demonstrated to improve EMI SE, including foamed/porous, segregated, multi-component, multilayered/sandwiched and prefabricated conductive networks.

318 citations

Journal ArticleDOI
TL;DR: The achieved performance illustrates that the as-prepared porous Co-C core-shell composite shows considerable potential as an effective microwave absorber.
Abstract: The combination of carbon materials and ferrite materials has recently attracted increased interest in microwave absorption applications. Herein, a novel composite with cobalt cores encapsulated in a porous carbon shell was synthesized via a facile sintering process with a cobaltic metal–organic framework (Co-MOF-74) as the precursor. Because of the magnetic loss caused by the Co cores and dielectric loss caused by the carbon shell with a unique porous structure, together with the interfacial polarization between two components, the ferromagnetic composite exhibited enhanced electromagnetic wave absorption performance compared to traditional ferrite materials. With the thermal decomposition temperature of 800 °C, the optimal reflection loss value achieved −62.12 dB at 11.85 GHz with thin thickness (2.4 mm), and the bandwidth ranged from 4.1 to 18 GHz with more than 90% of the microwave that could be absorbed. The achieved performance illustrates that the as-prepared porous Co–C core–shell composite shows ...

313 citations

Journal ArticleDOI
01 Nov 2019-Carbon
TL;DR: In this article, the synthesis and EMI shielding performances of carbon-based materials in X-band (8.2-12.4 GHz) have been reviewed and their shielding mechanisms are discussed.

306 citations