scispace - formally typeset
Search or ask a question
Author

Zhongxiu Yao

Bio: Zhongxiu Yao is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Ligand (biochemistry) & Human serum albumin. The author has an hindex of 1, co-authored 1 publications receiving 36 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: STD NMR method to map the group epitope and to measure the dissociation constant (K(D)) of specific interaction between ligand and protein is presented and results agree well with other reports of Trp-HSA interaction.

37 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This experiment is ideal to illustrate some fundamental NMR concepts, such as the nuclear Overhauser effect and relaxation in a multidisciplinary context, bridging chemistry and biochemistry with a taste of medicinal chemistry.
Abstract: Saturation transfer difference (STD) NMR has emerged as one of the most popular ligand-based NMR techniques for the study of protein−ligand interactions. The success of this technique is a consequence of its robustness and the fact that it is focused on the signals of the ligand, without any need of processing NMR information about the receptor and only using small quantities of nonlabeled macromolecule. Moreover, the attractiveness of this experiment is also extendable to the classroom. In the context of a practical NMR class, this experiment is ideal to illustrate some fundamental NMR concepts, such as the nuclear Overhauser effect and relaxation in a multidisciplinary context, bridging chemistry and biochemistry with a taste of medicinal chemistry.We use the readily available human serum albumin (HSA), 6-d,l-methyl-tryptophan (6-CH3-Trp), and 7- d,l-methyl-tryptophan (7-CH3-Trp) to introduce the STD-NMR experiment and to illustrate its applicability for ligand screening, mapping of binding moieties, an...

244 citations

Journal ArticleDOI
TL;DR: Three major ligand-observed NMR methods that depend on the nuclear Overhauser effect Spectroscopy, saturation transfer difference spectroscopy and water–ligand interactions observed via gradient spectroscopic experiments are reviewed with the aim of reporting recent developments and applications for the characterization of protein–ligands complexes, including affinity measurements and structural determination.
Abstract: Physiological processes are mainly controlled by intermolecular recognition mechanisms involving protein–protein and protein–ligand (low molecular weight molecules) interactions. One of the most important tools for probing these interactions is high-field solution nuclear magnetic resonance (NMR) through protein-observed and ligand-observed experiments, where the protein receptor or the organic compounds are selectively detected. NMR binding experiments rely on comparison of NMR parameters of the free and bound states of the molecules. Ligand-observed methods are not limited by the protein molecular size and therefore have great applicability for analysing protein–ligand interactions. The use of these NMR techniques has considerably expanded in recent years, both in chemical biology and in drug discovery. We review here three major ligand-observed NMR methods that depend on the nuclear Overhauser effect—transferred nuclear Overhauser effect spectroscopy, saturation transfer difference spectroscopy and water–ligand interactions observed via gradient spectroscopy experiments—with the aim of reporting recent developments and applications for the characterization of protein–ligand complexes, including affinity measurements and structural determination.

120 citations

Journal ArticleDOI
TL;DR: In vitro cytotoxicity studies with these compounds as well as EX527, a potent and selective SIRT1 inhibitor, suggest that antilymphoma activity of this compound class may be predominantly due to SIRT2 inhibition.
Abstract: Sirtuins are a family of NAD+-dependent protein deacetylases that play critical roles in epigenetic regulation, stress responses, and cellular aging in eukaryotic cells. In an effort to identify small molecule inhibitors of sirtuins for potential use as chemotherapeutics as well as tools to modulate sirtuin activity, we previously identified a nonselective sirtuin inhibitor called cambinol (IC50 ≈ 50 μM for SIRT1 and SIRT2) with in vitro and in vivo antilymphoma activity. In the current study, we used saturation transfer difference (STD) NMR experiments with recombinant SIRT1 and 20 to map parts of the inhibitor that interacted with the protein. Our ongoing efforts to optimize cambinol analogues for potency and selectivity have resulted in the identification of isoform selective analogues: 17 with >7.8-fold selectivity for SIRT1, 24 with >15.4-fold selectivity for SIRT2, and 8 with 6.8- and 5.3-fold selectivity for SIRT3 versus SIRT1 and SIRT2, respectively. In vitro cytotoxicity studies with these compou...

100 citations

Journal ArticleDOI
TL;DR: The direct in situ 1H STD-NMR identification of the best dynamic beta-galactosidase inhibitors from the dynamic HTA system was performed and the results were confirmed by inhibition studies, and the HTA product formed from the reaction between 1-thiogalactopyranose and a pyridine carboxaldehyde derivative provided the bestynamic inhibitor.
Abstract: This thesis deals with the design, formation and evaluation of dynamic systems constructed by means of sulfur-containing reversible reactions, in organic and aqueous media and under mild conditions. In a first part, the synthesis of thioglycoside derivatives, constituting the biologically relevant starting components of the dynamic systems, is described. In addition, the pD-profile of the mutarotation process in aqueous media for a series of 1-thioaldoses is reported and revealed an astonishing beta-anomeric preference for all the carbohydrate analogs under acidic or neutral conditions. In a second part, the phosphine-catalyzed or -mediated disulfide metathesis for dynamic system generation in organic or aqueous media is presented, respectively. The direct in situ 1H STD-NMR resolution of a dynamic carbohydrate system in the presence of a target protein (Concanavalin A) proved the suitability and compatibility of such disulfide metathesis protocols for the discovery of biologically relevant ligands. In a third part, hemithioacetal formation is demonstrated as a new and efficient reversible reaction for the spontaneous generation of a dynamic system, despite a virtual character of the component associations in basic aqueous media. The direct in situ 1H STD-NMR identification of the best dynamic beta-galactosidase inhibitors from the dynamic HTA system was performed and the results were confirmed by inhibition studies. Thus, the HTA product formed from the reaction between 1-thiogalactopyranose and a pyridine carboxaldehyde derivative provided the best dynamic inhibitor. In a fourth and final part, a dynamic drug design strategy, where the best inhibitors from the aforementioned dynamic HTA system were used as model for the design of non-dynamic (or “static”) beta-galactosidase inhibitors, is depicted. Inhibition studies disclosed potent leads among the set of ligands.

95 citations

Journal ArticleDOI
TL;DR: It is illustrated that STD NMR is not simply a method for drug screening and discovery, but has qualitative and quantitative applications that can answer fundamental and applied biological and biomedical questions involving molecular interactions between ligands and proteins.
Abstract: This review aims to illustrate that STD NMR is not simply a method for drug screening and discovery, but has qualitative and quantitative applications that can answer fundamental and applied biological and biomedical questions involving molecular interactions between ligands and proteins. We begin with a basic introduction to the technique of STD NMR and report on recent advances and biological applications of STD including studies to follow the interactions of non-steroidal anti-inflammatories, minimum binding requirements for virus infection and understating inhibition of amyloid fibre formation. We expand on this introduction by reporting recent STD NMR studies of live-cell receptor systems, new methodologies using scanning STD, magic-angle spinning STD and approaches to use STD NMR in a quantitative fashion for dissociation constants and group epitope mapping (GEM) determination. We finish by outlining new approaches that have potential to influence future applications of the technique; NMR isotope-editing, heteronuclear multidimensional STD and 19F STD methods that are becoming more amenable due to the latest NMR equipment technologies.

80 citations