scispace - formally typeset
Search or ask a question
Author

Zhongyi Liu

Bio: Zhongyi Liu is an academic researcher from Zhengzhou University. The author has contributed to research in topics: Catalysis & Cyclohexene. The author has an hindex of 30, co-authored 132 publications receiving 2989 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Electrochemical tests reveal that the as-formed Ru@CQDs exhibits excellent catalytic behavior with an onset overpotential of 0 mV, a Tafel slope of 47 mV decade-1, and good durability, which is superior to the current commercial Pt/C and most noble metals, non-noble metals, and nonmetallic catalysts under basic conditions.
Abstract: Highly active, stable, and cheap Pt-free catalysts for the hydrogen evolution reaction (HER) are facing increasing demand as a result of their potential use in future energy-conversion systems. However, the development of HER electrocatalysts with Pt-like or even superior activity, in particular ones that can function under alkaline conditions, remains a significant challenge. Here, the synthesis of a novel carbon-loaded ruthenium nanoparticle electrocatalyst (Ru@CQDs) for the HER, using carbon quantum dots (CQDs), is reported. Electrochemical tests reveal that, even under extremely alkaline conditions (1 m KOH), the as-formed Ru@CQDs exhibits excellent catalytic behavior with an onset overpotential of 0 mV, a Tafel slope of 47 mV decade-1 , and good durability. Most importantly, it only requires an overpotential of 10 mV to achieve the current density of 10 mA cm-2 . Such catalytic characteristics are superior to the current commercial Pt/C and most noble metals, non-noble metals, and nonmetallic catalysts under basic conditions. These findings open a new field for the application of CQDs and add to the growing family of metal@CQDs with high HER performance.

417 citations

Journal ArticleDOI
TL;DR: A facile method is reported to prepare an efficient and robust Ru-M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH-universal HER, which exhibits outstanding HER performance at all pH levels.
Abstract: A challenging but pressing task to design and synthesize novel, efficient, and robust pH‐universal hydrogen evolution reaction (HER) electrocatalysts for scalable and sustainable hydrogen production through electrochemical water splitting. Herein, we report a facile method to prepare an efficient and robust Ru‐M (M=Ni, Mn, Cu) bimetal nanoparticle and carbon quantum dot hybrid (RuM/CQDs) for pH‐universal HER. The RuNi/CQDs catalysts exhibit outstanding HER performance at all pH levels. The unexpected low overpotentials of 13, 58, and 18 mV shown by RuNi/CQDs allow a current density of 10 mA cm−2 in 1 m KOH, 0.5 m H2SO4, and 1 m PBS, respectively, for Ru loading at 5.93 μgRu cm−2. This performance is among the best catalytic activities reported for any platinum‐free electrocatalyst. Theoretical studies reveal that Ni doping results in a moderate weakening of the hydrogen bonding energy of nearby surface Ru atoms, which plays a critical role in improving the HER activity.

392 citations

Journal ArticleDOI
Weixue Meng1, Xue Bai1, Boyang Wang1, Zhongyi Liu1, Siyu Lu1, Bai Yang2 
01 Sep 2019
TL;DR: This article summarizes the representative methods for synthesizing BCDs in green and simple ways using biomass as a carbon source, including hydrothermal carbonization, and microwave, pyrolysis.

252 citations

Journal ArticleDOI
TL;DR: The structured CDs generated were captured by quenching the high-pressure phase to ambient conditions, thus greatly increasing the choice of materials available for a variety of applications.
Abstract: Piezochromic materials, which show color changes resulting from mechanical grinding or external pressure, can be used as mechanosensors, indicators of mechano-history, security papers, optoelectronic devices, and data storage systems. A class of piezochromic materials with unprecedented two-photon absorptive and yellow emissive carbon dots (CDs) was developed for the first time. Applied pressure from 0–22.84 GPa caused a noticeable color change in the luminescence of yellow emissive CDs, shifting from yellow (557 nm) to blue-green (491 nm). Moreover, first-principles calculations support transformation of the sp2 domains into sp3-hybridized domains under high pressure. The structured CDs generated were captured by quenching the high-pressure phase to ambient conditions, thus greatly increasing the choice of materials available for a variety of applications.

230 citations

Journal ArticleDOI
TL;DR: In this paper, a facile, green, kilogram-scale synthesis of high quality fluorescent CQDs derived from poplar leaves via a one-step hydrothermal method is reported.

160 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: High entropy alloys (HEAs) are barely 12 years old as discussed by the authors, and the field has stimulated new ideas and inspired the exploration of the vast composition space offered by multi-principal element alloys.

4,693 citations

Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: In this article, the phase formation for multi-component alloys has been predicted by calculating parameters Ω and δ for typical multichamber alloys reported, where Ω is defined as a parameter of the entropy of mixing timing the average melting temperature of the elements over the enthalpy of mixing, δ is the mean square deviation of the atomic size of elements.

1,559 citations

Journal ArticleDOI
Y.F. Ye1, Qing Wang1, Jian Lu1, C.T. Liu1, Yong Yang1 
TL;DR: In this paper, a critical review of the recent studies aiming to address the fundamental issues related to phase formation in high-entropy alloys is provided, and novel properties of HEAs are also discussed, such as their excellent specific strength, superior mechanical performance at high temperatures, exceptional ductility and fracture toughness at cryogenic temperatures, superparamagnetism and superconductivity.

1,494 citations