scispace - formally typeset
Search or ask a question
Author

Zhou Wang

Bio: Zhou Wang is an academic researcher from University of Waterloo. The author has contributed to research in topics: Image quality & Image processing. The author has an hindex of 63, co-authored 256 publications receiving 30562 citations. Previous affiliations of Zhou Wang include South China University of Technology & City University of Hong Kong.


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: Although the new index is mathematically defined and no human visual system model is explicitly employed, experiments on various image distortion types indicate that it performs significantly better than the widely used distortion metric mean squared error.
Abstract: We propose a new universal objective image quality index, which is easy to calculate and applicable to various image processing applications. Instead of using traditional error summation methods, the proposed index is designed by modeling any image distortion as a combination of three factors: loss of correlation, luminance distortion, and contrast distortion. Although the new index is mathematically defined and no human visual system model is explicitly employed, our experiments on various image distortion types indicate that it performs significantly better than the widely used distortion metric mean squared error. Demonstrative images and an efficient MATLAB implementation of the algorithm are available online at http://anchovy.ece.utexas.edu//spl sim/zwang/research/quality_index/demo.html.

4,687 citations

Proceedings ArticleDOI

[...]

09 Nov 2003
TL;DR: This paper proposes a multiscale structural similarity method, which supplies more flexibility than previous single-scale methods in incorporating the variations of viewing conditions, and develops an image synthesis method to calibrate the parameters that define the relative importance of different scales.
Abstract: The structural similarity image quality paradigm is based on the assumption that the human visual system is highly adapted for extracting structural information from the scene, and therefore a measure of structural similarity can provide a good approximation to perceived image quality. This paper proposes a multiscale structural similarity method, which supplies more flexibility than previous single-scale methods in incorporating the variations of viewing conditions. We develop an image synthesis method to calibrate the parameters that define the relative importance of different scales. Experimental comparisons demonstrate the effectiveness of the proposed method.

4,333 citations

Journal ArticleDOI

[...]

TL;DR: This article has reviewed the reasons why people want to love or leave the venerable (but perhaps hoary) MSE and reviewed emerging alternative signal fidelity measures and discussed their potential application to a wide variety of problems.
Abstract: In this article, we have reviewed the reasons why we (collectively) want to love or leave the venerable (but perhaps hoary) MSE. We have also reviewed emerging alternative signal fidelity measures and discussed their potential application to a wide variety of problems. The message we are trying to send here is not that one should abandon use of the MSE nor to blindly switch to any other particular signal fidelity measure. Rather, we hope to make the point that there are powerful, easy-to-use, and easy-to-understand alternatives that might be deployed depending on the application environment and needs. While we expect (and indeed, hope) that the MSE will continue to be widely used as a signal fidelity measure, it is our greater desire to see more advanced signal fidelity measures being used, especially in applications where perceptual criteria might be relevant. Ideally, the performance of a new signal processing algorithm might be compared to other algorithms using several fidelity criteria. Lastly, we hope that we have given further motivation to the community to consider recent advanced signal fidelity measures as design criteria for optimizing signal processing algorithms and systems. It is in this direction that we believe that the greatest benefit eventually lies.

2,601 citations

Proceedings Article

[...]

01 Dec 2003
TL;DR: This paper proposes a multi-scale structural similarity method, which supplies more flexibility than previous single-scale methods in incorporating the variations of viewing conditions, and develops an image synthesis method to calibrate the parameters that define the relative importance of different scales.
Abstract: The structural similarity image quality paradigm is based on the assumption that the human visual system is highly adapted for extracting structural information from the scene, and therefore a measure of structural similarity can provide a good approximation to perceived image quality. This paper proposes a multi-scale structural similarity method, which supplies more flexibility than previous single-scale methods in incorporating the variations of viewing conditions. We develop an image synthesis method to calibrate the parameters that define the relative importance of different scales. Experimental comparisons demonstrate the effectiveness of the proposed method.

1,136 citations

Journal ArticleDOI

[...]

TL;DR: A new philosophy in designing image and video quality metrics is followed, which uses structural dis- tortion as an estimate of perceived visual distortion as part of full-reference (FR) video quality assessment.
Abstract: Objective image and video quality measures play important roles in a variety of image and video pro- cessing applications, such as compression, communication, printing, analysis, registration, restoration, enhancement and watermarking. Most proposed quality assessment ap- proaches in the literature are error sensitivity-based meth- ods. In this paper, we follow a new philosophy in designing image and video quality metrics, which uses structural dis- tortion as an estimate of perceived visual distortion. A com- putationally ecient approach is developed for full-reference (FR) video quality assessment. The algorithm is tested on the video quality experts group (VQEG) Phase I FR-TV test data set. Keywords—Image quality assessment, video quality assess- ment, human visual system, error sensitivity, structural dis- tortion, video quality experts group (VQEG)

1,045 citations


Cited by
More filters
Journal ArticleDOI

[...]

TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.

30,333 citations

[...]

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI

[...]

TL;DR: Zhang et al. as discussed by the authors proposed a deep learning method for single image super-resolution (SR), which directly learns an end-to-end mapping between the low/high-resolution images.
Abstract: We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers. Our deep CNN has a lightweight structure, yet demonstrates state-of-the-art restoration quality, and achieves fast speed for practical on-line usage. We explore different network structures and parameter settings to achieve trade-offs between performance and speed. Moreover, we extend our network to cope with three color channels simultaneously, and show better overall reconstruction quality.

6,122 citations

Proceedings ArticleDOI

[...]

21 Jul 2017
TL;DR: SRGAN as mentioned in this paper proposes a perceptual loss function which consists of an adversarial loss and a content loss, which pushes the solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images.
Abstract: Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.

5,157 citations

Posted Content

[...]

TL;DR: SRGAN, a generative adversarial network (GAN) for image super-resolution (SR), is presented, to its knowledge, the first framework capable of inferring photo-realistic natural images for 4x upscaling factors and a perceptual loss function which consists of an adversarial loss and a content loss.
Abstract: Despite the breakthroughs in accuracy and speed of single image super-resolution using faster and deeper convolutional neural networks, one central problem remains largely unsolved: how do we recover the finer texture details when we super-resolve at large upscaling factors? The behavior of optimization-based super-resolution methods is principally driven by the choice of the objective function. Recent work has largely focused on minimizing the mean squared reconstruction error. The resulting estimates have high peak signal-to-noise ratios, but they are often lacking high-frequency details and are perceptually unsatisfying in the sense that they fail to match the fidelity expected at the higher resolution. In this paper, we present SRGAN, a generative adversarial network (GAN) for image super-resolution (SR). To our knowledge, it is the first framework capable of inferring photo-realistic natural images for 4x upscaling factors. To achieve this, we propose a perceptual loss function which consists of an adversarial loss and a content loss. The adversarial loss pushes our solution to the natural image manifold using a discriminator network that is trained to differentiate between the super-resolved images and original photo-realistic images. In addition, we use a content loss motivated by perceptual similarity instead of similarity in pixel space. Our deep residual network is able to recover photo-realistic textures from heavily downsampled images on public benchmarks. An extensive mean-opinion-score (MOS) test shows hugely significant gains in perceptual quality using SRGAN. The MOS scores obtained with SRGAN are closer to those of the original high-resolution images than to those obtained with any state-of-the-art method.

4,397 citations