scispace - formally typeset
Search or ask a question
Author

Zhou Yu

Other affiliations: General Electric, University of Notre Dame, GE Healthcare  ...read more
Bio: Zhou Yu is an academic researcher from Toshiba Medical Systems Corporation. The author has contributed to research in topics: Iterative reconstruction & Image quality. The author has an hindex of 12, co-authored 59 publications receiving 943 citations. Previous affiliations of Zhou Yu include General Electric & University of Notre Dame.


Papers
More filters
Journal ArticleDOI
TL;DR: A fast model-based iterative reconstruction algorithm using spatially nonhomogeneous ICD (NH-ICD) optimization that accelerates the reconstructions by roughly a factor of three on average for typical 3-D multislice geometries is presented.
Abstract: Recent applications of model-based iterative reconstruction (MBIR) algorithms to multislice helical CT reconstructions have shown that MBIR can greatly improve image quality by increasing resolution as well as reducing noise and some artifacts However, high computational cost and long reconstruction times remain as a barrier to the use of MBIR in practical applications Among the various iterative methods that have been studied for MBIR, iterative coordinate descent (ICD) has been found to have relatively low overall computational requirements due to its fast convergence This paper presents a fast model-based iterative reconstruction algorithm using spatially nonhomogeneous ICD (NH-ICD) optimization The NH-ICD algorithm speeds up convergence by focusing computation where it is most needed The NH-ICD algorithm has a mechanism that adaptively selects voxels for update First, a voxel selection criterion VSC determines the voxels in greatest need of update Then a voxel selection algorithm VSA selects the order of successive voxel updates based upon the need for repeated updates of some locations, while retaining characteristics for global convergence In order to speed up each voxel update, we also propose a fast 1-D optimization algorithm that uses a quadratic substitute function to upper bound the local 1-D objective function, so that a closed form solution can be obtained rather than using a computationally expensive line search algorithm We examine the performance of the proposed algorithm using several clinical data sets of various anatomy The experimental results show that the proposed method accelerates the reconstructions by roughly a factor of three on average for typical 3-D multislice geometries

291 citations

Journal ArticleDOI
TL;DR: DLR improved the quality of abdominal U-HRCT images and image noise and overall image quality for hepatic ultra-high-resolution CT images improved with deep learning reconstruction as compared to hybrid and model-based iterative reconstruction.
Abstract: Deep learning reconstruction (DLR) is a new reconstruction method; it introduces deep convolutional neural networks into the reconstruction flow. This study was conducted in order to examine the clinical applicability of abdominal ultra-high-resolution CT (U-HRCT) exams reconstructed with a new DLR in comparison to hybrid and model-based iterative reconstruction (hybrid-IR, MBIR). Our retrospective study included 46 patients seen between December 2017 and April 2018. A radiologist recorded the standard deviation of attenuation in the paraspinal muscle as the image noise and calculated the contrast-to-noise ratio (CNR) for the aorta, portal vein, and liver. The overall image quality was assessed by two other radiologists and graded on a 5-point confidence scale ranging from 1 (unacceptable) to 5 (excellent). The difference between CT images subjected to hybrid-IR, MBIR, and DLR was compared. The image noise was significantly lower and the CNR was significantly higher on DLR than hybrid-IR and MBIR images (p < 0.01). DLR images received the highest and MBIR images the lowest scores for overall image quality. DLR improved the quality of abdominal U-HRCT images. • The potential degradation due to increased noise may prevent implementation of ultra-high-resolution CT in the abdomen. • Image noise and overall image quality for hepatic ultra-high-resolution CT images improved with deep learning reconstruction as compared to hybrid- and model-based iterative reconstruction.

212 citations

Journal ArticleDOI
TL;DR: Deep learning–based image restoration is a new technique that employs the deep convolutional neural network for image quality improvement at coronary CTA and may allow for a reduction in radiation exposure.
Abstract: The purpose of this study was to compare the image quality of coronary computed tomography angiography (CTA) subjected to deep learning–based image restoration (DLR) method with images subjected to hybrid iterative reconstruction (IR). We enrolled 30 patients (22 men, 8 women) who underwent coronary CTA on a 320-slice CT scanner. The images were reconstructed with hybrid IR and with DLR. The image noise in the ascending aorta, left atrium, and septal wall of the ventricle was measured on all images and the contrast-to-noise ratio (CNR) in the proximal coronary arteries was calculated. We also generated CT attenuation profiles across the proximal coronary arteries and measured the width of the edge rise distance (ERD) and the edge rise slope (ERS). Two observers visually evaluated the overall image quality using a 4-point scale (1 = poor, 4 = excellent). On DLR images, the mean image noise was lower than that on hybrid IR images (18.5 ± 2.8 HU vs. 23.0 ± 4.6 HU, p < 0.01) and the CNR was significantly higher (p < 0.01). The mean ERD was significantly shorter on DLR than on hybrid IR images, whereas the mean ERS was steeper on DLR than on hybrid IR images. The mean image quality score for hybrid IR and DLR images was 2.96 and 3.58, respectively (p < 0.01). DLR reduces the image noise and improves the image quality at coronary CTA. • Deep learning–based image restoration is a new technique that employs the deep convolutional neural network for image quality improvement. • Deep learning–based restoration reduces the image noise and improves image quality at coronary CT angiography. • This method may allow for a reduction in radiation exposure.

152 citations

Journal ArticleDOI
TL;DR: On DLR images, the image noise was lower, and high-contrast spatial resolution and task-based detectability were better than on images reconstructed with other state-of-the art techniques.

137 citations

Journal ArticleDOI
TL;DR: For a selected few topics, the author has decided to provide sufficient high-level technical descriptions and to discuss their advantages and applications.
Abstract: Over the past two decades, rapid system and hardware development of x-ray computed tomography (CT) technologies has been accompanied by equally exciting advances in image reconstruction algorithms. The algorithmic development can generally be classified into three major areas: analytical reconstruction, model-based iterative reconstruction, and application-specific reconstruction. Given the limited scope of this chapter, it is nearly impossible to cover every important development in this field; it is equally difficult to provide sufficient breadth and depth on each selected topic. As a compromise, we have decided, for a selected few topics, to provide sufficient high-level technical descriptions and to discuss their advantages and applications.

125 citations


Cited by
More filters
Journal ArticleDOI
21 Mar 2018-Nature
TL;DR: A unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data is presented.
Abstract: Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction-automated transform by manifold approximation (AUTOMAP)-which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development of new acquisition strategies across imaging modalities.

1,361 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the current state of the art as CT transforms from a qualitative diagnostic tool to a quantitative one, including the use of iterative reconstruction strategies suited to specific segmentation tasks and emerging methods that provide more insight than conventional attenuation based tomography.
Abstract: X-ray computer tomography (CT) is fast becoming an accepted tool within the materials science community for the acquisition of 3D images. Here the authors review the current state of the art as CT transforms from a qualitative diagnostic tool to a quantitative one. Our review considers first the image acquisition process, including the use of iterative reconstruction strategies suited to specific segmentation tasks and emerging methods that provide more insight (e.g. fast and high resolution imaging, crystallite (grain) imaging) than conventional attenuation based tomography. Methods and shortcomings of CT are examined for the quantification of 3D volumetric data to extract key topological parameters such as phase fractions, phase contiguity, and damage levels as well as density variations. As a non-destructive technique, CT is an ideal means of following structural development over time via time lapse sequences of 3D images (sometimes called 3D movies or 4D imaging). This includes information nee...

1,009 citations

Journal ArticleDOI
TL;DR: Enhanced image resolution and lower noise have been achieved, concurrently with the reduction of helical cone-beam artifacts, as demonstrated by phantom studies and clinical results illustrate the capabilities of the algorithm on real patient data.
Abstract: Multislice helical computed tomography scanning offers the advantages of faster acquisition and wide organ coverage for routine clinical diagnostic purposes. However, image reconstruction is faced with the challenges of three-dimensional cone-beam geometry, data completeness issues, and low dosage. Of all available reconstruction methods, statistical iterative reconstruction (IR) techniques appear particularly promising since they provide the flexibility of accurate physical noise modeling and geometric system description. In this paper, we present the application of Bayesian iterative algorithms to real 3D multislice helical data to demonstrate significant image quality improvement over conventional techniques. We also introduce a novel prior distribution designed to provide flexibility in its parameters to fine-tune image quality. Specifically, enhanced image resolution and lower noise have been achieved, concurrently with the reduction of helical cone-beam artifacts, as demonstrated by phantom studies. Clinical results also illustrate the capabilities of the algorithm on real patient data. Although computational load remains a significant challenge for practical development, superior image quality combined with advancements in computing technology make IR techniques a legitimate candidate for future clinical applications.

987 citations

Proceedings ArticleDOI
01 Dec 2013
TL;DR: This paper demonstrates with some simple examples how Plug-and-Play priors can be used to mix and match a wide variety of existing denoising models with a tomographic forward model, thus greatly expanding the range of possible problem solutions.
Abstract: Model-based reconstruction is a powerful framework for solving a variety of inverse problems in imaging. In recent years, enormous progress has been made in the problem of denoising, a special case of an inverse problem where the forward model is an identity operator. Similarly, great progress has been made in improving model-based inversion when the forward model corresponds to complex physical measurements in applications such as X-ray CT, electron-microscopy, MRI, and ultrasound, to name just a few. However, combining state-of-the-art denoising algorithms (i.e., prior models) with state-of-the-art inversion methods (i.e., forward models) has been a challenge for many reasons. In this paper, we propose a flexible framework that allows state-of-the-art forward models of imaging systems to be matched with state-of-the-art priors or denoising models. This framework, which we term as Plug-and-Play priors, has the advantage that it dramatically simplifies software integration, and moreover, it allows state-of-the-art denoising methods that have no known formulation as an optimization problem to be used. We demonstrate with some simple examples how Plug-and-Play priors can be used to mix and match a wide variety of existing denoising models with a tomographic forward model, thus greatly expanding the range of possible problem solutions.

884 citations

Journal ArticleDOI
TL;DR: The deep learning models established in this study were effective for the early screening of COVID-19 patients and were demonstrated to be a promising supplementary diagnostic method for frontline clinical doctors.

730 citations