scispace - formally typeset
Search or ask a question
Author

Zhu Han

Bio: Zhu Han is an academic researcher from University of Houston. The author has contributed to research in topics: Computer science & Wireless network. The author has an hindex of 109, co-authored 1407 publications receiving 48725 citations. Previous affiliations of Zhu Han include University of British Columbia & University of Maryland University College.


Papers
More filters
Book
18 Jun 2009
TL;DR: Dynamic spectrum access and management in cognitive radio networks provides an all-inclusive introduction to this emerging technology, outlining the fundamentals of cognitive radio-based wireless communication and networking, spectrum sharing models, and the requirements for dynamic spectrum access as mentioned in this paper.
Abstract: Are you involved in designing the next generation of wireless networks? With spectrum becoming an ever scarcer resource, it is critical that new systems utilize all available frequency bands as efficiently as possible. The revolutionary technology presented in this book will be at the cutting edge of future wireless communications. Dynamic Spectrum Access and Management in Cognitive Radio Networks provides you with an all-inclusive introduction to this emerging technology, outlining the fundamentals of cognitive radio-based wireless communication and networking, spectrum sharing models, and the requirements for dynamic spectrum access. In addition to the different techniques and their applications in designing dynamic spectrum access methods, you'll also find state-of-the-art dynamic spectrum access schemes, including classifications of the different schemes and the technical details of each scheme. This is a perfect introduction for graduate students and researchers, as well as a useful self-study guide for practitioners.

516 citations

Journal ArticleDOI
TL;DR: This first comprehensive tutorial on the use of matching theory, a Nobel Prize winning framework, for resource management in wireless networks is developed and results show how matching theory can effectively improve the performance of resource allocation in all three applications discussed.
Abstract: The emergence of novel wireless networking paradigms such as small cell and cognitive radio networks has forever transformed the way in which wireless systems are operated. In particular, the need for self-organizing solutions to manage the scarce spectral resources has become a prevalent theme in many emerging wireless systems. In this article, the first comprehensive tutorial on the use of matching theory, a Nobel Prize winning framework, for resource management in wireless networks is developed. To cater for the unique features of emerging wireless networks, a novel, wireless-oriented classification of matching theory is proposed. Then the key solution concepts and algorithmic implementations of this framework are exposed. The developed concepts are applied in three important wireless networking areas in order to demonstrate the usefulness of this analytical tool. Results show how matching theory can effectively improve the performance of resource allocation in all three applications discussed.

515 citations

Journal ArticleDOI
TL;DR: This work introduces a reverse iterative combinatorial auction as the allocation mechanism for mobile peer-to-peer communication, and proves that the proposed auction-based scheme is cheat-proof, and converges in a finite number of iteration rounds.
Abstract: Peer-to-peer communication has been recently considered as a popular issue for local area services. An innovative resource allocation scheme is proposed to improve the performance of mobile peer-to-peer, i.e., device-to-device (D2D), communications as an underlay in the downlink (DL) cellular networks. To optimize the system sum rate over the resource sharing of both D2D and cellular modes, we introduce a reverse iterative combinatorial auction as the allocation mechanism. In the auction, all the spectrum resources are considered as a set of resource units, which as bidders compete to obtain business while the packages of the D2D pairs are auctioned off as goods in each auction round. We first formulate the valuation of each resource unit, as a basis of the proposed auction. And then a detailed non-monotonic descending price auction algorithm is explained depending on the utility function that accounts for the channel gain from D2D and the costs for the system. Further, we prove that the proposed auction-based scheme is cheat-proof, and converges in a finite number of iteration rounds. We explain non-monotonicity in the price update process and show lower complexity compared to a traditional combinatorial allocation. The simulation results demonstrate that the algorithm efficiently leads to a good performance on the system sum rate.

440 citations

Journal ArticleDOI
TL;DR: This paper proposes a distributed game-theoretical framework over multiuser cooperative communication networks to achieve optimal relay selection and power allocation without knowledge of CSI.
Abstract: The performance in cooperative communication depends on careful resource allocation such as relay selection and power control, but the traditional centralized resource allocation requires precise measurements of channel state information (CSI). In this paper, we propose a distributed game-theoretical framework over multiuser cooperative communication networks to achieve optimal relay selection and power allocation without knowledge of CSI. A two-level Stackelberg game is employed to jointly consider the benefits of the source node and the relay nodes in which the source node is modeled as a buyer and the relay nodes are modeled as sellers, respectively. The proposed approach not only helps the source find the relays at relatively better locations and "buyrdquo an optimal amount of power from the relays, but also helps the competing relays maximize their own utilities by asking the optimal prices. The game is proved to converge to a unique optimal equilibrium. Moreover, the proposed resource allocation scheme with the distributed game can achieve comparable performance to that employing centralized schemes.

419 citations

Journal ArticleDOI
TL;DR: A novel concept of edge computing for mobile blockchain and an economic approach for edge computing resource management are introduced and a prototype of mobile edge computing enabled blockchain systems are presented with experimental results to justify the proposed concept.
Abstract: Blockchain, as the backbone technology of the current popular Bitcoin digital currency, has become a promising decentralized data management framework. Although blockchain has been widely adopted in many applications (e.g., finance, healthcare, and logistics), its application in mobile services is still limited. This is due to the fact that blockchain users need to solve preset proof-of-work puzzles to add new data (i.e., a block) to the blockchain. Solving the proof of work, however, consumes substantial resources in terms of CPU time and energy, which is not suitable for resource-limited mobile devices. To facilitate blockchain applications in future mobile Internet of Things systems, multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.

417 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI

6,278 citations