scispace - formally typeset
Search or ask a question
Author

Ziad H. Musslimani

Bio: Ziad H. Musslimani is an academic researcher from Florida State University. The author has contributed to research in topics: Nonlinear system & Soliton. The author has an hindex of 35, co-authored 97 publications receiving 9103 citations. Previous affiliations of Ziad H. Musslimani include University of Colorado Boulder & Technion – Israel Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the interplay between parity-time symmetry and non-Hermitian physics in optics, plasmonics and optomechanics has been explored both theoretically and experimentally.
Abstract: In recent years, notions drawn from non-Hermitian physics and parity–time (PT) symmetry have attracted considerable attention. In particular, the realization that the interplay between gain and loss can lead to entirely new and unexpected features has initiated an intense research effort to explore non-Hermitian systems both theoretically and experimentally. Here we review recent progress in this emerging field, and provide an outlook to future directions and developments. This Review Article outlines the exploration of the interplay between parity–time symmetry and non-Hermitian physics in optics, plasmonics and optomechanics.

1,831 citations

Journal ArticleDOI
TL;DR: In this paper, parity-time symmetric periodic potentials are investigated in detail for both one-and two-dimensional lattice geometries, and it is shown that PT periodic structures can exhibit unique characteristics stemming from the nonorthogonality of the associated Floquet-Bloch modes.
Abstract: The possibility of parity-time (PT) symmetric periodic potentials is investigated within the context of optics. Beam dynamics in this new type of optical structures is examined in detail for both one- and two-dimensional lattice geometries. It is shown that PT periodic structures can exhibit unique characteristics stemming from the nonorthogonality of the associated Floquet-Bloch modes. Some of these features include double refraction, power oscillations, and eigenfunction unfolding as well as nonreciprocal diffraction patterns.

1,512 citations

Journal ArticleDOI
TL;DR: Starting from Lagrangian principles, a formalism suitable for describing coupled optical parity-time symmetric systems is developed.
Abstract: Starting from Lagrangian principles we develop a formalism suitable for describing coupled optical parity-time symmetric systems.

1,184 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of nonlinearity on beam dynamics in parity-time (PT) symmetric potentials was investigated and a novel class of one-and two-dimensional nonlinear self-trapped modes were shown to be stable over a wide range of potential parameters.
Abstract: We investigate the effect of nonlinearity on beam dynamics in parity-time (PT) symmetric potentials. We show that a novel class of one- and two-dimensional nonlinear self-trapped modes can exist in optical PT synthetic lattices. These solitons are shown to be stable over a wide range of potential parameters. The transverse power flow within these complex solitons is also examined.

1,040 citations

Journal ArticleDOI
TL;DR: A new integrable nonlocal nonlinear Schrödinger equation is introduced that possesses a Lax pair and an infinite number of conservation laws and is PT symmetric.
Abstract: A new integrable nonlocal nonlinear Schrodinger equation is introduced. It possesses a Lax pair and an infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit breathing one soliton solution is found. Key properties are discussed and contrasted with the classical nonlinear Schrodinger equation.

682 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential, and observe both spontaneous PT symmetry breaking and power oscillations violating left-right symmetry.
Abstract: One of the fundamental axioms of quantum mechanics is associated with the Hermiticity of physical observables 1 . In the case of the Hamiltonian operator, this requirement not only implies real eigenenergies but also guarantees probability conservation. Interestingly, a wide class of non-Hermitian Hamiltonians can still show entirely real spectra. Among these are Hamiltonians respecting parity‐time (PT) symmetry 2‐7 . Even though the Hermiticity of quantum observables was never in doubt, such concepts have motivated discussions on several fronts in physics, including quantum field theories 8 , nonHermitian Anderson models 9 and open quantum systems 10,11 , to mention a few. Although the impact of PT symmetry in these fields is still debated, it has been recently realized that optics can provide a fertile ground where PT-related notions can be implemented and experimentally investigated 12‐15 . In this letter we report the first observation of the behaviour of a PT optical coupled system that judiciously involves a complex index potential. We observe both spontaneous PT symmetry breaking and power oscillations violating left‐right symmetry. Our results may pave the way towards a new class of PT-synthetic materials with intriguing and unexpected properties that rely on non-reciprocal light propagation and tailored transverse energy flow. Before we introduce the concept of spacetime reflection in optics, we first briefly outline some of the basic aspects of this symmetry within the context of quantum mechanics. In general, a Hamiltonian HD p 2 =2mCV(x

3,097 citations

Journal ArticleDOI
TL;DR: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light as mentioned in this paper, which holds great promise for applications.
Abstract: Topological photonics is a rapidly emerging field of research in which geometrical and topological ideas are exploited to design and control the behavior of light. Drawing inspiration from the discovery of the quantum Hall effects and topological insulators in condensed matter, recent advances have shown how to engineer analogous effects also for photons, leading to remarkable phenomena such as the robust unidirectional propagation of light, which hold great promise for applications. Thanks to the flexibility and diversity of photonics systems, this field is also opening up new opportunities to realize exotic topological models and to probe and exploit topological effects in new ways. This article reviews experimental and theoretical developments in topological photonics across a wide range of experimental platforms, including photonic crystals, waveguides, metamaterials, cavities, optomechanics, silicon photonics, and circuit QED. A discussion of how changing the dimensionality and symmetries of photonics systems has allowed for the realization of different topological phases is offered, and progress in understanding the interplay of topology with non-Hermitian effects, such as dissipation, is reviewed. As an exciting perspective, topological photonics can be combined with optical nonlinearities, leading toward new collective phenomena and novel strongly correlated states of light, such as an analog of the fractional quantum Hall effect.

3,052 citations

Journal ArticleDOI
TL;DR: To the best of our knowledge, there is only one application of mathematical modelling to face recognition as mentioned in this paper, and it is a face recognition problem that scarcely clamoured for attention before the computer age but, having surfaced, has attracted the attention of some fine minds.
Abstract: to be done in this area. Face recognition is a problem that scarcely clamoured for attention before the computer age but, having surfaced, has involved a wide range of techniques and has attracted the attention of some fine minds (David Mumford was a Fields Medallist in 1974). This singular application of mathematical modelling to a messy applied problem of obvious utility and importance but with no unique solution is a pretty one to share with students: perhaps, returning to the source of our opening quotation, we may invert Duncan's earlier observation, 'There is an art to find the mind's construction in the face!'.

3,015 citations

Journal ArticleDOI
TL;DR: This work demonstrates experimentally passive PT-symmetry breaking within the realm of optics, which leads to a loss induced optical transparency in specially designed pseudo-Hermitian guiding potentials.
Abstract: In 1998, Bender and Boettcher found that a wide class of Hamiltonians, even though non-Hermitian, can still exhibit entirely real spectra provided that they obey parity-time requirements or PT symmetry. Here we demonstrate experimentally passive PT-symmetry breaking within the realm of optics. This phase transition leads to a loss induced optical transparency in specially designed pseudo-Hermitian guiding potentials.

2,409 citations

Journal ArticleDOI
TL;DR: In this paper, the interplay between parity-time symmetry and non-Hermitian physics in optics, plasmonics and optomechanics has been explored both theoretically and experimentally.
Abstract: In recent years, notions drawn from non-Hermitian physics and parity–time (PT) symmetry have attracted considerable attention. In particular, the realization that the interplay between gain and loss can lead to entirely new and unexpected features has initiated an intense research effort to explore non-Hermitian systems both theoretically and experimentally. Here we review recent progress in this emerging field, and provide an outlook to future directions and developments. This Review Article outlines the exploration of the interplay between parity–time symmetry and non-Hermitian physics in optics, plasmonics and optomechanics.

1,831 citations