scispace - formally typeset
Search or ask a question
Author

Zichao Lian

Bio: Zichao Lian is an academic researcher from University of Shanghai for Science and Technology. The author has contributed to research in topics: Photocatalysis & Materials science. The author has an hindex of 14, co-authored 19 publications receiving 1094 citations. Previous affiliations of Zichao Lian include Kyoto University & Shanghai Normal University.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, size-controllable g-C3N4 quantum dots (QDs) were in-situ synthesized and grafted onto single-crystalline TiO2 nanotube arrays (TiO2-NTAs) based on nanotubes-confinement effect.

316 citations

Journal ArticleDOI
TL;DR: The photocatalytic H2 evolution of Pt-Ti3+/TiO2 is significantly higher than that of the photoreduced Pt loaded on the original TiO2 and commercial P25, due to the various valence states of Pt (Ptn+, n = 0, 2, or 3), forming Pt-O bonds embedded in the framework of Ti O2 and ultrafine Pt metal nanoparticles on the surface of TiO 2.
Abstract: Pt-doped mesoporous Ti3+ self-doped TiO2 (Pt–Ti3+/TiO2) is in situ synthesized via an ionothermal route, by treating metallic Ti in an ionic liquid containing LiOAc, HOAc, and a H2PtCl6 aqueous solution under mild ionothermal conditions. Such Ti3+-enriched environment, as well as oxygen vacancies, is proven to be effective for allowing the in situ reduction of Pt4+ ions uniformly located in the framework of the TiO2 bulk. The photocatalytic H2 evolution of Pt–Ti3+/TiO2 is significantly higher than that of the photoreduced Pt loaded on the original TiO2 and commercial P25. Such greatly enhanced activity is due to the various valence states of Pt (Ptn+, n = 0, 2, or 3), forming Pt–O bonds embedded in the framework of TiO2 and ultrafine Pt metal nanoparticles on the surface of TiO2. Such Ptn+–O bonds could act as the bridges for facilitating the photogenerated electron transfer from the bulk to the surface of TiO2 with a higher electron carrier density (3.11 × 1020 cm–3), about 2.5 times that (1.25 × 1020 cm...

144 citations

Journal ArticleDOI
TL;DR: The as-formed C60 cluster protection layers in the CdS/TiO2 framework not only improve the light absorption capability, but also greatly accelerated the photogenerated electron transfer to C60 clusters for H2 evolution.
Abstract: Fullerene (C60) enhanced mesoporous CdS/TiO2 architectures were fabricated by an evaporation induced self-assembly route together with an ion-exchanged method. C60 clusters were incorporated into the pore wall of mesoporous CdS/TiO2 with the formation of C60 enhanced CdS/TiO2 hybrid architectures, for achieving the enhanced photostability and photocatalytic activity in H2 evolution under visible-light irradiation. Such greatly enhanced photocatalytic performance and photostability could be due to the strong combination and heterojunctions between C60 and CdS/TiO2. The as-formed C60 cluster protection layers in the CdS/TiO2 framework not only improve the light absorption capability, but also greatly accelerated the photogenerated electron transfer to C60 clusters for H2 evolution.

138 citations

Journal ArticleDOI
TL;DR: A black Ti3+-doped single-crystal TiO2 (Ti3+/TiO2) was synthesized by treating Ti metal in an ionic liquid containing LiAc and HAc under mild ionothermal conditions.
Abstract: A black Ti3+-doped single-crystal TiO2 (Ti3+/TiO2) was one-pot synthesized by treating Ti metal in an ionic liquid containing LiAc and HAc under mild ionothermal conditions. The ionic liquid (1-methyl-imidazolium tetrafluoroborate) supplied an environment enriched with fluoride ions for dissolving titanium foil under ionothermal conditions, followed by reducing protons in acetic acid to form Ti3+ ions, leading to Ti3+-doped single-crystal TiO2 as a black powder. EPR and XPS results indicated the high concentrations of both Ti3+-dopants and oxygen vacancies. The Ti3+ incorporated into the TiO2 lattice could narrow the energy band gap of TiO2via forming intermediate energy levels, leading to a visible photocatalyst. Meanwhile, the oxygen vacancies could inhibit the photoelectron–hole recombination. As expected, such a black Ti3+/TiO2 exhibited high activity in the photocatalytic degradation of organic pollutants and water splitting for H2 production under irradiation with visible light and/or simulated solar light.

136 citations

Journal ArticleDOI
TL;DR: The enhancement in the photoelectric conversion efficiency and activity was ascribed to the synergistic effects of silver and the unique hierarchical structures of TiO2 nanotube arrays, strong SPR effect, and anti-shielding effect of ultrafine Ag QDs.
Abstract: Plasmonic silver quantum dots coupled with hierarchical TiO 2 nanotube arrays photoelectrodes for efficient visible-light photoelectrocatalytic hydrogen evolution

112 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Abstract: Photoreduction of CO2 into sustainable and green solar fuels is generally believed to be an appealing solution to simultaneously overcome both environmental problems and energy crisis. The low selectivity of challenging multi-electron CO2 photoreduction reactions makes it one of the holy grails in heterogeneous photocatalysis. This Review highlights the important roles of cocatalysts in selective photocatalytic CO2 reduction into solar fuels using semiconductor catalysts. A special emphasis in this review is placed on the key role, design considerations and modification strategies of cocatalysts for CO2 photoreduction. Various cocatalysts, such as the biomimetic, metal-based, metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area. This Review provides useful information for the design of highly selective cocatalysts for photo(electro)reduction and electroreduction of CO2 and complements the existing reviews on various semiconductor photocatalysts.

1,365 citations

Journal ArticleDOI
TL;DR: This review illustrates that it is possible to employ the fundamental principles underlying photosynthesis and the tools of chemical and materials science to design and prepare photocatalysts for overall water splitting.
Abstract: Solar-driven water splitting provides a leading approach to store the abundant yet intermittent solar energy and produce hydrogen as a clean and sustainable energy carrier. A straightforward route to light-driven water splitting is to apply self-supported particulate photocatalysts, which is expected to allow solar hydrogen to be competitive with fossil-fuel-derived hydrogen on a levelized cost basis. More importantly, the powder-based systems can lend themselves to making functional panels on a large scale while retaining the intrinsic activity of the photocatalyst. However, all attempts to generate hydrogen via powder-based solar water-splitting systems to date have unfortunately fallen short of the efficiency values required for practical applications. Photocatalysis on photocatalyst particles involves three sequential steps: (i) absorption of photons with higher energies than the bandgap of the photocatalysts, leading to the excitation of electron-hole pairs in the particles, (ii) charge separation and migration of these photoexcited carriers, and (iii) surface chemical reactions based on these carriers. In this review, we focus on the challenges of each step and summarize material design strategies to overcome the obstacles and limitations. This review illustrates that it is possible to employ the fundamental principles underlying photosynthesis and the tools of chemical and materials science to design and prepare photocatalysts for overall water splitting.

1,332 citations

Journal ArticleDOI
TL;DR: The potential of MXenes for the photocatalytic degradation of organic pollutants in water, such as dye waste, is addressed, along with their promise as catalysts for ammonium synthesis from nitrogen.
Abstract: Transition metal carbides and nitrides (MXenes), a family of two-dimensional (2D) inorganic compounds, are materials composed of a few atomic layers of transition metal carbides, nitrides, or carbonitrides. Ti3C2, the first 2D layered MXene, was isolated in 2011. This material, which is a layered bulk material analogous to graphite, was derived from its 3D phase, Ti3AlC2 MAX. Since then, material scientists have either determined or predicted the stable phases of >200 different MXenes based on combinations of various transition metals such as Ti, Mo, V, Cr, and their alloys with C and N. Extensive experimental and theoretical studies have shown their exciting potential for energy conversion and electrochemical storage. To this end, we comprehensively summarize the current advances in MXene research. We begin by reviewing the structure types and morphologies and their fabrication routes. The review then discusses the mechanical, electrical, optical, and electrochemical properties of MXenes. The focus then turns to their exciting potential in energy storage and conversion. Energy storage applications include electrodes in rechargeable lithium- and sodium-ion batteries, lithium-sulfur batteries, and supercapacitors. In terms of energy conversion, photocatalytic fuel production, such as hydrogen evolution from water splitting, and carbon dioxide reduction are presented. The potential of MXenes for the photocatalytic degradation of organic pollutants in water, such as dye waste, is also addressed, along with their promise as catalysts for ammonium synthesis from nitrogen. Finally, their application potential is summarized.

1,201 citations

Journal ArticleDOI
TL;DR: In this article, advances in the strategies for the visible light activation, origin of visible light activity, and electronic structure of various visible-light active TiO 2 photocatalysts are discussed in detail.
Abstract: The remarkable achievement by Fujishima and Honda (1972) in the photo-electrochemical water splitting results in the extensive use of TiO 2 nanomaterials for environmental purification and energy storage/conversion applications. Though there are many advantages for the TiO 2 compared to other semiconductor photocatalysts, its band gap of 3.2 eV restrains application to the UV-region of the electromagnetic spectrum ( λ ≤ 387.5 nm). As a result, development of visible-light active titanium dioxide is one of the key challenges in the field of semiconductor photocatalysis. In this review, advances in the strategies for the visible light activation, origin of visible-light activity, and electronic structure of various visible-light active TiO 2 photocatalysts are discussed in detail. It has also been shown that if appropriate models are used, the theoretical insights can successfully be employed to develop novel catalysts to enhance the photocatalytic performance in the visible region. Recent developments in theory and experiments in visible-light induced water splitting, degradation of environmental pollutants, water and air purification and antibacterial applications are also reviewed. Various strategies to identify appropriate dopants for improved visible-light absorption and electron–hole separation to enhance the photocatalytic activity are discussed in detail, and a number of recommendations are also presented.

921 citations