scispace - formally typeset
Search or ask a question
Author

Zihao Huang

Bio: Zihao Huang is an academic researcher from Chinese Academy of Sciences. The author has contributed to research in topics: Superconductivity & Physics. The author has an hindex of 4, co-authored 7 publications receiving 85 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the vanadium-based kagome lattice CsV3Sb5 was observed to exhibit a V-shaped pairing gap about 0.5 meV below a transition temperature Tc about 2.3 K.
Abstract: The recently discovered family of vanadium-based kagome metals with topological band structures offer a new opportunity to study frustrated, correlated and topological quantum states. These layered compounds are nonmagnetic and undergo charge density wave (CDW) transitions before developing superconductivity at low temperatures. Here we report the observation of unconventional superconductivity and pair density wave (PDW) in the vanadium-based kagome lattice CsV3Sb5 using scanning tunneling microscope/spectroscopy (STM/STS) and Josephson STS. The differential conductance exhibits a V-shaped pairing gap about 0.5 meV below a transition temperature Tc about 2.3 K. Superconducting phase coherence is observed by Josephson effect and Cooper-pair tunneling to a superconducting tip. We find that CsV3Sb5 is a strong-coupling superconductor (2delta/kBTc about 5) and coexists with 4a0 unidirectional and 2x2 charge order. Remarkably, we discover a 4a0/3 bidirectional PDW accompanied by spatial modulations of the coherence peak and gap-depth in the tunneling conductance. We term the latter as a roton-PDW that can produce a commensurate vortex-antivortex lattice to account for the observed conductance modulations. Above Tc, we observe long-range ordered 4a0 unidirectional and 2a0 bidirectional CDW and a large V-shaped pseudogap in the density of state. Electron-phonon calculations attribute the 2x2 CDW to phonon softening induced structural reconstruction, but the phonon mediated pairing cannot describe the observed strong-coupling superconductor. Our findings show that electron correlations in the charge sector can drive the 4a0 unidirectional CDW, unconventional superconductivity, and roton-PDW with striking analogies to the phenomenology of cuprate high-Tc superconductors, and provide the groundwork for understanding their microscopic origins in the vanadium-based kagome superconductors.

207 citations

Journal ArticleDOI
29 Sep 2021-Nature
TL;DR: In this paper, the authors reported the observation of unconventional superconductivity and pair density wave (PDW) in vanadium-based kagome materials using scanning tunneling microscopy (STM/STS) and Josephson STS.
Abstract: The transition-metal kagome lattice materials host frustrated, correlated, and topological quantum states of matter1–9. Recently, a new family of vanadium-based kagome metals AV3Sb5 (A=K, Rb, and Cs) with topological band structures has been discovered10,11. These layered compounds are nonmagnetic and undergo charge density wave transitions before developing superconductivity at low temperatures11–19. Here we report the observation of unconventional superconductivity and pair density wave (PDW) in CsV3Sb5 using scanning tunneling microscope/spectroscopy (STM/STS) and Josephson STS. We find that CsV3Sb5 exhibits a V-shaped pairing gap Δ~0.5 meV and is a strong-coupling superconductor (2∆/kBTc~5) that coexists with 4a0 unidirectional and 2a0×2a0 charge order. Remarkably, we discover a 3Q PDW accompanied by bidirectional 4a0/3 spatial modulations of the superconducting gap, coherence peak and gap-depth in the tunneling conductance. We term this novel quantum state a roton-PDW associated with an underlying vortex-antivortex lattice that can account for the observed conductance modulations. Probing the electronic states in the vortex halo in an applied magnetic field, in strong-field that suppresses superconductivity, and in zero-field above Tc reveals that the PDW is a primary state responsible for an emergent pseudogap and intertwined electronic order. Our findings show striking analogies and distinctions to the phenomenology of high-Tc cuprate superconductors, and provide groundwork for understanding the microscopic origin of correlated electronic states and superconductivity in vanadium-based kagome metals.

53 citations

Journal ArticleDOI
TL;DR: In this article, a quantum anomalous vortex with integer quantized vortex core states and the Majorana zero mode induced by magnetic Fe adatoms deposited on the surface of an iron-based superconductor FeTe0.55Se0.45 were observed.
Abstract: Braiding Majorana zero modes is essential for fault-tolerant topological quantum computing. Iron-based superconductors with nontrivial band topology have recently emerged as a surprisingly promising platform for creating distinct Majorana zero modes in magnetic vortices in a single material and at relatively high temperatures. The magnetic field-induced Abrikosov vortex lattice makes it difficult to braid a set of Majorana zero modes or to study the coupling of a Majorana doublet due to overlapping wave functions. Here we report the observation of the proposed quantum anomalous vortex with integer quantized vortex core states and the Majorana zero mode induced by magnetic Fe adatoms deposited on the surface. We observe its hybridization with a nearby field-induced Majorana vortex in iron-based superconductor FeTe0.55Se0.45. We also observe vortex-free Yu-Shiba-Rusinov bound states at the Fe adatoms with a weaker coupling to the substrate, and discover a reversible transition between Yu-Shiba-Rusinov states and Majorana zero mode by manipulating the exchange coupling strength. The dual origin of the Majorana zero modes, from magnetic adatoms and external magnetic field, provides a new single-material platform for studying their interactions and braiding in superconductors bearing topological band structures. Braiding Majorana modes is essential for topological quantum computing, but it remains difficult to find a suitable platform. Here, the authors report the evidence of hybridization between field-induced and magnetic adatom induced Majorana modes in an iron-based superconductor FeTe0.55Se0.45, providing a possible single-material platform for braiding Majorana modes.

27 citations

Journal ArticleDOI
TL;DR: In this paper , the authors suggested that mixed ionic-electronic conductors can serve as a promising host for NH4+ storage and showed that the existence of ionic conductive tunnels greatly promotes the high-rate NH4− storage.
Abstract: Compared to the commonly applied metallic ion charge carriers (e.g., Li+ and Na+), batteries using nonmetallic charge carriers (e.g., H+ and NH4+) generally have much faster kinetics and high‐rate capability thanks to the small hydrated ionic sizes and nondiffusion control topochemistry. However, the hosts for nonmetallic charge carriers are still limited. In this work, it is suggested that mixed ionic–electronic conductors can serve as a promising host for NH4+ storage. Using hexagonal tungsten oxide (h‐WO3) as an example, it is shown that the existence of ionic conductive tunnels greatly promotes the high‐rate NH4+ storage. Specifically, a much higher capacity of 82 mAh g–1 at 1 A g–1 is achieved on h‐WO3, in sharp contrast to 14 mAh g–1 of monoclinic tungsten oxide (m‐WO3). In addition, unlike layered materials, the insertion and desertion of NH4+ ions are confined within the tunnels of the h‐WO3, which minimizes the damage to the crystal structure. This leads to outstanding stability of up to 200 000 cycles with 68% capacity retention at a high current of 20 A g–1.

26 citations

Posted ContentDOI
14 Jun 2021
TL;DR: In this paper, the authors synthesized high-quality Nd0.8Sr0.2NiO2 thin films with different thicknesses and investigated the interface and strain effects on the electrical, magnetic and optical properties.
Abstract: Nickel-based complex oxides have served as a playground for decades in the quest for a copper-oxide analog of the high-temperature (high-Tc) superconductivity. They may provide key points towards understanding the mechanism and an alternative route for high-Tc superconductors. The recent discovery of superconductivity in the infinite-layer nickelate thin films has fulfilled this pursuit. Thus far, however, material synthesis remains challenging. The demonstration of perfect diamagnetism is still missing, and understanding of the role of the interface and bulk to the superconducting properties is still lacking. Here, we synthesized high-quality Nd0.8Sr0.2NiO2 thin films with different thicknesses and investigated the interface and strain effects on the electrical, magnetic and optical properties. Perfect diamagnetism is demonstrated, confirming the occurrence of superconductivity in the thin films. Unlike the thick films in which the normal-state Hall coefficient (RH) changes signs as the temperature decreases, the RH of films thinner than 6.1 nm remains negative, suggesting a thickness-driven band structure modification. Moreover, X-ray absorption spectroscopy reveals the Ni-O hybridization nature in doped infinite-layer nickelates, and the hybridization is enhanced as the thickness decreases. Consistent with band structure calculations on the nickelate/SrTiO3 heterostructure, the interface and strain effect induce a dominating electron-like band in the ultrathin film, thus causing the sign change of the RH.

22 citations


Cited by
More filters
Journal Article
TL;DR: High-resolution spectroscopic imaging techniques show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states, providing strong evidence for the formation of a topological phase and edge-bound Majorana fermions in atomic chains.
Abstract: A possible sighting of Majorana states Nearly 80 years ago, the Italian physicist Ettore Majorana proposed the existence of an unusual type of particle that is its own antiparticle, the so-called Majorana fermion. The search for a free Majorana fermion has so far been unsuccessful, but bound Majorana-like collective excitations may exist in certain exotic superconductors. Nadj-Perge et al. created such a topological superconductor by depositing iron atoms onto the surface of superconducting lead, forming atomic chains (see the Perspective by Lee). They then used a scanning tunneling microscope to observe enhanced conductance at the ends of these chains at zero energy, where theory predicts Majorana states should appear. Science, this issue p. 602; see also p. 547 Scanning tunneling microscopy is used to observe signatures of Majorana states at the ends of iron atom chains. [Also see Perspective by Lee] Majorana fermions are predicted to localize at the edge of a topological superconductor, a state of matter that can form when a ferromagnetic system is placed in proximity to a conventional superconductor with strong spin-orbit interaction. With the goal of realizing a one-dimensional topological superconductor, we have fabricated ferromagnetic iron (Fe) atomic chains on the surface of superconducting lead (Pb). Using high-resolution spectroscopic imaging techniques, we show that the onset of superconductivity, which gaps the electronic density of states in the bulk of the Fe chains, is accompanied by the appearance of zero-energy end-states. This spatially resolved signature provides strong evidence, corroborated by other observations, for the formation of a topological phase and edge-bound Majorana fermions in our atomic chains.

877 citations

Journal Article
TL;DR: In this paper, the surface of the iron-based superconductor FeTe0.55Se0.45 has been shown to be topologically superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.
Abstract: A topological superconductor A promising path toward topological quantum computing involves exotic quasiparticles called the Majorana bound states (MBSs). MBSs have been observed in heterostructures that require careful nanofabrication, but the complexity of such systems makes further progress tricky. Zhang et al. identified a topological superconductor in which MBSs may be observed in a simpler way by looking into the cores of vortices induced by an external magnetic field. Using angle-resolved photoemission, the researchers found that the surface of the iron superconductor FeTe0.55Se0.45 satisfies the required conditions for topological superconductivity. Science, this issue p. 182 Angle-resolved photoemission spectroscopy indicates that FeTe0.55Se0.45 harbors Dirac-cone–type spin-helical surface states. Topological superconductors are predicted to host exotic Majorana states that obey non-Abelian statistics and can be used to implement a topological quantum computer. Most of the proposed topological superconductors are realized in difficult-to-fabricate heterostructures at very low temperatures. By using high-resolution spin-resolved and angle-resolved photoelectron spectroscopy, we find that the iron-based superconductor FeTe1–xSex (x = 0.45; superconducting transition temperature Tc = 14.5 kelvin) hosts Dirac-cone–type spin-helical surface states at the Fermi level; the surface states exhibit an s-wave superconducting gap below Tc. Our study shows that the surface states of FeTe0.55Se0.45 are topologically superconducting, providing a simple and possibly high-temperature platform for realizing Majorana states.

347 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the electronic and structural properties of charge density wave (CDW) by first-principles calculations and revealed an inverse Star of David deformation as the $2\ifmmode\times\else\texttimes\fi{}2
Abstract: Kagome metals $A{\mathrm{V}}_{3}{\mathrm{Sb}}_{5}$ ($A=\mathrm{K}$, Rb, and Cs) exhibit intriguing superconductivity below $0.9\ensuremath{\sim}2.5\text{ }\text{ }\mathrm{K}$, a charge density wave (CDW) transition around $80\ensuremath{\sim}100\text{ }\text{ }\mathrm{K}$, and ${\mathbb{Z}}_{2}$ topological surface states. The nature of the CDW phase and its relation to superconductivity remains elusive. In this work, we investigate the electronic and structural properties of CDW by first-principles calculations. We reveal an inverse Star of David deformation as the $2\ifmmode\times\else\texttimes\fi{}2\ifmmode\times\else\texttimes\fi{}2$ CDW ground state of the kagome lattice. The kagome lattice shows softening breathing-phonon modes, indicating the structural instability. However, electrons play an essential role in the CDW transition via Fermi surface nesting and van Hove singularity. The inverse Star of David structure agrees with recent experiments by scanning tunneling microscopy (STM). The CDW phase inherits the nontrivial ${\mathbb{Z}}_{2}$-type topological band structure. Further, we find that the electron-phonon coupling is too weak to account for the superconductivity ${T}_{c}$ in all three materials. It implies the existence of unconventional pairing of these kagome metals. Our results provide essential knowledge toward understanding the superconductivity and topology in kagome metals.

199 citations

Journal ArticleDOI
29 Sep 2021-Nature
TL;DR: In this paper, a temperature-dependent cascade of different symmetry-broken electronic states in a new kagome superconductor, CsV3Sb5, was discovered using spectroscopic imaging scanning tunnelling microscopy.
Abstract: The kagome lattice of transition metal atoms provides an exciting platform to study electronic correlations in the presence of geometric frustration and nontrivial band topology1–18, which continues to bear surprises. Here, using spectroscopic imaging scanning tunnelling microscopy, we discover a temperature-dependent cascade of different symmetry-broken electronic states in a new kagome superconductor, CsV3Sb5. We reveal, at a temperature far above the superconducting transition temperature Tc ~ 2.5 K, a tri-directional charge order with a 2a0 period that breaks the translation symmetry of the lattice. As the system is cooled down towards Tc, we observe a prominent V-shaped spectral gap opening at the Fermi level and an additional breaking of the six-fold rotational symmetry, which persists through the superconducting transition. This rotational symmetry breaking is observed as the emergence of an additional 4a0 unidirectional charge order and strongly anisotropic scattering in differential conductance maps. The latter can be directly attributed to the orbital-selective renormalization of the vanadium kagome bands. Our experiments reveal a complex landscape of electronic states that can coexist on a kagome lattice, and highlight intriguing parallels to high-Tc superconductors and twisted bilayer graphene. A study reveals a temperature-dependent cascade of different symmetry-broken electronic states in the kagome superconductor CsV3Sb5, and highlights intriguing parallels between vanadium-based kagome metals and materials exhibiting similar electronic phases.

168 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used x-ray spectroscopy in concert with density functional theory to show that the electronic structure of RNiO2 (R = La, Nd), while similar to the cuprates, includes significant distinctions.
Abstract: The search for oxide materials with physical properties similar to the cuprate high Tc superconductors, but based on alternative transition metals such as nickel, has grown and evolved over time. The recent discovery of superconductivity in doped infinite-layer nickelates RNiO2 (R = rare-earth element) further strengthens these efforts.With a crystal structure similar to the infinite-layer cuprates - transition metal oxide layers separated by a rare-earth spacer layer - formal valence counting suggests that these materials have monovalent Ni1+ cations with the same 3d electron count as Cu2+ in the cuprates. Here, we use x-ray spectroscopy in concert with density functional theory to show that the electronic structure of RNiO2 (R = La, Nd), while similar to the cuprates, includes significant distinctions. Unlike cuprates with insulating spacer layers between the CuO2 planes, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly-interacting three-dimensional 5d metallic state. This three-dimensional metallic state hybridizes with a quasi-two-dimensional, strongly correlated state with 3dx2-y2 symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare earth intermetallics, well-known for heavy Fermion behavior, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy Fermion compounds. This unique Kondo- or Anderson-lattice-like "oxide-intermetallic" replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.

168 citations