scispace - formally typeset
Search or ask a question
Author

Zijun Zhang

Other affiliations: University of Iowa
Bio: Zijun Zhang is an academic researcher from City University of Hong Kong. The author has contributed to research in topics: Wind power & Wind speed. The author has an hindex of 29, co-authored 81 publications receiving 2722 citations. Previous affiliations of Zijun Zhang include University of Iowa.


Papers
More filters
Journal ArticleDOI
Long Wang1, Zijun Zhang1, Huan Long1, Jia Xu, Ruihua Liu 
TL;DR: The feasibility of monitoring the health of wind turbine (WT) gearboxes based on the lubricant pressure data in the supervisory control and data acquisition system is investigated and a deep neural network (DNN)-based framework is developed to monitor conditions of WT gearboxes and identify their impending failures.
Abstract: The feasibility of monitoring the health of wind turbine (WT) gearboxes based on the lubricant pressure data in the supervisory control and data acquisition system is investigated in this paper. A deep neural network (DNN)-based framework is developed to monitor conditions of WT gearboxes and identify their impending failures. Six data-mining algorithms, the k- nearest neighbors, least absolute shrinkage and selection operator, ridge regression (Ridge), support vector machines, shallow neural network, as well as DNN, are applied to model the lubricant pressure. A comparative analysis of developed data-driven models is conducted and the DNN model is the most accurate. To prevent the overfitting of the DNN model, a dropout algorithm is applied into the DNN training process. Computational results show that the prediction error will shift before the occurrences of gearbox failures. An exponentially weighted moving average control chart is deployed to derive criteria for detecting the shifts. The effectiveness of the proposed monitoring approach is demonstrated by examining real cases from wind farms in China and benchmarked against the gearbox monitoring based on the oil temperature data.

261 citations

Journal ArticleDOI
TL;DR: In this paper, a data-driven approach for the development of a daily steam load model is presented, where a neural network (NN) ensemble with five MLP (multi-layer perceptrons) performed best among all data-mining algorithms tested and therefore was selected to develop a predictive model.

206 citations

Journal ArticleDOI
TL;DR: A data-driven framework to automatically detect wind turbine blade surface cracks based on images taken by unmanned aerial vehicles (UAVs) and Haar-like features are applied to depict crack regions and train a cascading classifier for detecting cracks.
Abstract: In this paper, a data-driven framework is proposed to automatically detect wind turbine blade surface cracks based on images taken by unmanned aerial vehicles (UAVs). Haar-like features are applied to depict crack regions and train a cascading classifier for detecting cracks. Two sets of Haar-like features, the original and extended Haar-like features, are utilized. Based on selected Haar-like features, an extended cascading classifier is developed to perform the crack detection through stage classifiers selected from a set of base models, the LogitBoost, Decision Tree, and Support Vector Machine. In the detection, a scalable scanning window is applied to locate crack regions based on developed cascading classifiers using the extended feature set. The effectiveness of the proposed data-driven crack detection framework is validated by both UAV-taken images collected from a commercial wind farm and artificially generated. The extended cascading classifier is compared with a cascading classifier developed by the LogitBoost only to show its advantages in the image-based crack detection. A computational study is performed to further demonstrate the success of the proposed framework in identifying the number of cracks and locating them in original images.

195 citations

Journal ArticleDOI
TL;DR: An enhanced SELM is developed via replacing the Euclidean norm of the mean square error (MSE) criterion in ELM with the generalized correntropy criterion to further improve the forecasting performance.
Abstract: Recently, wind speed forecasting as an effective computing technique plays an important role in advancing industry informatics, while dealing with these issues of control and operation for renewable power systems. However, it is facing some increasing difficulties to handle the large-scale dataset generated in these forecasting applications, with the purpose of ensuring stable computing performance. In response to such limitation, this paper proposes a more practical approach through the combination of extreme-learning machine (ELM) method and deep-learning model. ELM is a novel computing paradigm that enables the neural network (NN) based learning to be achieved with fast training speed and good generalization performance. The stacked ELM (SELM) is an advanced ELM algorithm under deep-learning framework, which works efficiently on memory consumption decrease. In this paper, an enhanced SELM is accordingly developed via replacing the Euclidean norm of the mean square error (MSE) criterion in ELM with the generalized correntropy criterion to further improve the forecasting performance. The advantage of the enhanced SELM with generalized correntropy to achieve better forecasting performance mainly relies on the following aspect. Generalized correntropy is a stable and robust nonlinear similarity measure while employing machine learning method to forecast wind speed, where the outliers may exist in some industrially measured values. Specifically, the experimental results of short-term and ultra-short-term forecasting on real wind speed data show that the proposed approach can achieve better computing performance compared with other traditional and more recent methods.

194 citations

Journal ArticleDOI
01 Oct 2013-Energy
TL;DR: In this article, a survey of recent developments in wind energy research including wind speed prediction, wind turbine control, operations of hybrid power systems, as well as condition monitoring and fault detection are surveyed.

189 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a review of recent developed models for predicting building energy consumption, which include elaborate and simplified engineering methods, statistical methods and artificial intelligence methods, and further prospects are proposed for additional research reference.
Abstract: The energy performance in buildings is influenced by many factors, such as ambient weather conditions, building structure and characteristics, the operation of sub-level components like lighting and HVAC systems, occupancy and their behavior. This complex situation makes it very difficult to accurately implement the prediction of building energy consumption. This paper reviews recently developed models for solving this problem, which include elaborate and simplified engineering methods, statistical methods and artificial intelligence methods. Previous research work concerning these models and relevant applications are introduced. Based on the analysis of previous work, further prospects are proposed for additional research reference.

1,509 citations

Journal ArticleDOI
TL;DR: A review of the current state of the art in computational optimization methods applied to renewable and sustainable energy can be found in this article, which offers a clear vision of the latest research advances in this field.
Abstract: Energy is a vital input for social and economic development. As a result of the generalization of agricultural, industrial and domestic activities the demand for energy has increased remarkably, especially in emergent countries. This has meant rapid grower in the level of greenhouse gas emissions and the increase in fuel prices, which are the main driving forces behind efforts to utilize renewable energy sources more effectively, i.e. energy which comes from natural resources and is also naturally replenished. Despite the obvious advantages of renewable energy, it presents important drawbacks, such as the discontinuity of generation, as most renewable energy resources depend on the climate, which is why their use requires complex design, planning and control optimization methods. Fortunately, the continuous advances in computer hardware and software are allowing researchers to deal with these optimization problems using computational resources, as can be seen in the large number of optimization methods that have been applied to the renewable and sustainable energy field. This paper presents a review of the current state of the art in computational optimization methods applied to renewable and sustainable energy, offering a clear vision of the latest research advances in this field.

1,394 citations

Journal ArticleDOI
TL;DR: An overview of forecasting methods of solar irradiation using machine learning approaches is given and it will be shown that other methods begin to be used in this context of prediction.

1,095 citations

Journal ArticleDOI
TL;DR: The role of big data in supporting smart manufacturing is discussed, a historical perspective to data lifecycle in manufacturing is overviewed, and a conceptual framework proposed in the paper is proposed.

937 citations