scispace - formally typeset
Search or ask a question
Author

Zilu Ge

Bio: Zilu Ge is an academic researcher from Third Military Medical University. The author has contributed to research in topics: Tendon & Myokine. The author has an hindex of 4, co-authored 7 publications receiving 49 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The findings supported the potential role of IL-15 as a modulator on fate of FAPs in injured muscle and as a novel therapy for chronic muscle injury.
Abstract: Chronic muscle injury is characteristics of fatty infiltration and fibrosis. Recently, fibro/adipogenic progenitors (FAPs) were found to be indispensable for muscular regeneration while were also responsible for fibrosis and fatty infiltration in muscle injury. Many myokines have been proven to regulate the adipose or cell proliferation. Because the fate of FAPs is largely dependent on microenvironment and the regulation of myokines on FAPs is still unclear. We screened the potential myokines and found Interleukin-15 (IL-15) may regulate the fatty infiltration in muscle injury. In this study, we investigated how IL-15 regulated FAPs in muscle injury and the effect on muscle regeneration. Cell proliferation assay, western blots, qRT-PCR, immunohistochemistry, flow cytometric analysis were performed to investigate the effect of IL-15 on proliferation and adipogensis of FAPs. Acute muscle injury was induced by injection of glycerol or cardiotoxin to analyze how IL-15 effected on FAPs in vivo and its function on fatty infiltration or muscle regeneration. We identified that the expression of IL-15 in injured muscle was negatively associated with fatty infiltration. IL-15 can stimulate the proliferation of FAPs and prevent the adipogenesis of FAPs in vitro and in vivo. The growth of FAPs caused by IL-15 was mediated through JAK-STAT pathway. In addition, desert hedgehog pathway may participate in IL-15 inhibiting adipogenesis of FAPs. Our study showed IL-15 can cause the fibrosis after muscle damage and promote the myofiber regeneration. Finally, the expression of IL-15 was positively associated with severity of fibrosis and number of FAPs in patients with chronic rotator cuff tear. These findings supported the potential role of IL-15 as a modulator on fate of FAPs in injured muscle and as a novel therapy for chronic muscle injury.

46 citations

Journal ArticleDOI
TL;DR: By down‐regulating PTEN/PI3K/AKT signalling, aspirin inhibited adipogenesis of TSCs and fatty infiltration in injury tendon, promoted biomechanical properties and decreased rupture risk of injury tendon.
Abstract: Tendon injury repairs are big challenges in sports medicine, and fatty infiltration after tendon injury is very common and hampers tendon injury healing process. Tendon stem cells (TSCs), as precursors of tendon cells, have shown promising effect on injury tendon repair for their tenogenesis and tendon extracellular matrix formation. Adipocytes and lipids accumulation is a landmark event in pathological process of tendon injury, and this may induce tendon rupture in clinical practice. Based on this, it is important to inhibit TSCs adipogenesis and lipids infiltration to restore structure and function of injury tendon. Aspirin, as the representative of non-steroidal anti-inflammatory drugs (NSAIDs), has been widely used in tendon injury for its anti-inflammatory and analgesic actions, but effect of aspirin on TSCs adipogenesis and fatty infiltration is still unclear. Under adipogenesis conditions, TSCs were treated with concentration gradient of aspirin. Oil red O staining was performed to observe changes of lipids accumulation. Next, we used RNA sequencing to compare profile changes of gene expression between induction group and aspirin-treated group. Then, we verified the effect of filtrated signalling on TSCs adipogenesis. At last, we established rat tendon injury model and compared changes of biomechanical properties after aspirin treatment. The results showed that aspirin decreased lipids accumulation in injury tendon and inhibited TSCs adipogenesis. RNA sequencing filtrated PTEN/PI3K/AKT signalling as our target. After adding the signalling activators of VO-Ohpic and IGF-1, inhibited adipogenesis of TSCs was reversed. Still, aspirin promoted maximum loading, ultimate stress and breaking elongation of injury tendon. In conclusion, by down-regulating PTEN/PI3K/AKT signalling, aspirin inhibited adipogenesis of TSCs and fatty infiltration in injury tendon, promoted biomechanical properties and decreased rupture risk of injury tendon. All these provided new therapeutic potential and medicine evidence of aspirin in treating tendon injury and tendinopathy.

24 citations

Journal ArticleDOI
TL;DR: Compared to the PPR group, the DCWCO group had poorer short-term clinical outcomes but provide better long-term function and symptom remission, and can be a good option for those patients with higher functional expectations.
Abstract: Haglund syndrome is a common disease that causes posterior heel pain. This study compared the clinical outcomes of dorsal closing wedge calcaneal osteotomy (DCWCO) and posterosuperior prominence resection (PPR) for the treatment of Haglund syndrome. This retrospective study included 12 patients who underwent DCWCO and 32 patients who underwent PPR from January 2010 to August 2016. Patients were evaluated using the American Orthopedic Foot Ankle Society ankle-hindfoot scale (AOFAS), Victorian Institute of Sport Assessment Scale for Achilles tendinopathy (VISA-A), Fowler-Philip angle, Bohler’s angle, and calcaneal pitch angle preoperatively and postoperatively (at 3 months, 6 months, 1 year, and the latest follow-up). Both groups exhibited a significant increase in their AOFAS and VISA-A scores after surgery. The DCWCO group had lower AOFAS scores than the PPR group at 6 months (77.6 ± 5.1 vs. 82.8 ± 7.8; P = 0.037) but had higher scores at the latest follow-up (98.2 ± 2.3 vs. 93.4 ± 6.1; P = 0.030). The DCWCO group had lower VISA-A scores at 3 months (56.9 ± 13.9 vs. 65.2 ± 11.0; P = 0.044) but higher scores at the latest follow-up (98.2 ± 2.6 vs. 94.3 ± 5.0; P = 0.010) than the PPR group. Both groups exhibited significant changes in the Fowler-Philip angle and Bohler’s angle after surgery. The postoperative Fowler-Philip angle of the DCWCO group was greater than that of the PPR group (35.9° ± 4.9° vs. 31.4° ± 6.2°; P = 0.026). However, there was no statistically significant difference in any other angle of the two groups postoperatively. Compared to the PPR group, the DCWCO group had poorer short-term clinical outcomes but provide better long-term function and symptom remission. This method can be a good option for those patients with higher functional expectations.

16 citations

Journal ArticleDOI
TL;DR: This study profiled lncRNAs and mRNAs involved in RCT in comparison with the normal tendon (NT) by RNA sequencing (RNA-Seq), and revealed several potential therapeutic targets for RCT.
Abstract: Background Rotator cuff tendinopathy (RCT) is a common musculoskeletal disorder in the shoulder, whose underlying mechanism is unknown. Long non-coding RNAs (lncRNAs) are involved in the development of various diseases, but little is known about their potential roles in RCT. Methods In this study, we profiled lncRNAs and mRNAs involved in RCT in comparison with the normal tendon (NT) by RNA sequencing (RNA-Seq), to identify potential therapeutic targets. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathway, competing endogenous RNA (ceRNA), and co-expression network construction were used to identify the potential functions of these RNAs. Three lncRNAs and three mRNAs were validated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Results In total, 419 lncRNAs and 1,541 mRNAs were differentially expressed between the RCT and NT groups with a fold change of >2 and P of <0.01. The GO and KEGG pathway analyses showed that the differentially expressed mRNAs were mainly enriched in complement activation and involved in the citrate cycle. The ceRNA network showed the interaction of differentially expressed RNAs, comprising 139 lncRNAs, 126 mRNAs, and 35 miRNAs. NONHSAT209114.1, ENST00000577806, NONHSAT168464.1, PLK2, TMEM214, and IGF2 were validated by PCR. We constructed a co-expressed network of these validated RNAs. Conclusions We preliminarily analyzed the profile of lncRNAs and mRNAs in RCT. The bioinformatic analysis revealed several potential therapeutic targets for RCT.

13 citations

Journal ArticleDOI
TL;DR: This finding suggests long-term use of Dex that decreases the expression of type I collagen at molecular and tissue levels both in human and rat Achilles tendons and decreases the mechanical strength of the tendon, thereby increasing the risk of Achilles tendon rupture.
Abstract: Spontaneous Achilles tendon rupture associated with long-term dexamethasone (Dex) use has been reported. However, few studies have investigated the potential mechanism. The aim of this study was to evaluate the effects of oral Dex on type I collagen in humans and rats and its association with tendon rupture. First, six Achilles tendons from patients who received long-term Dex treatment, and another six normal tendons were harvested for histological evaluation. Secondly, 8-week-old rats (n = 72) were randomly assigned to a Dex group or a control group. Type I collagen was studied at the mechanical, histological, and molecular levels after 3 and 5 weeks. Tenocytes isolated from normal human and rat tendon were used to investigate the effect of Dex on cellular scale. Histological analysis of human and rat tendon tissue revealed an irregular, disordered arrangement of type I collagen in the Dex group compared with the control group. In addition, In the Dex+ group, type I collagen expression decreased in comparison with the Dex− group in both human and rat tenocytes. The mechanical strength of tendons was significantly reduced in the Dex group (68.87 ± 11.07 N) in comparison with the control group (81.46 ± 7.62 N, P = 0.013) after 5 weeks. Tendons in the Dex group were shorter with smaller cross-sectional areas (10.71 ± 0.34 mm2, 1.44 ± 0.22 mm2, respectively) after 5 weeks than those in the control group (11.13 ± 0.50 mm2, P = 0.050, 2.74 ± 0.34 mm2, P < 0.001, respectively). This finding suggests long-term use of Dex that decreases the expression of type I collagen at molecular and tissue levels both in human and rat Achilles tendons. Furthermore, Dex decreases the mechanical strength of the tendon, thereby increasing the risk of Achilles tendon rupture.

7 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current - however still fragmentary - knowledge about the potential communication pathways of muscle and immune system, how they are affected by aging of skeletal muscle and possible treatment strategies are outlined and should stimulate further research in this important scientific field.

202 citations

Journal ArticleDOI
TL;DR: This review will focus on the soluble factors that regulate FAPs activity, highlighting their roles in orchestrating the inter-cellular interactions between F APs and the other cell populations that participate in muscle regeneration.
Abstract: Skeletal muscle is composed of a large and heterogenous assortment of cell populations that interact with each other to maintain muscle homeostasis and orchestrate regeneration. Although Satellite Cells (SCs) - which are muscle stem cells - are the protagonists of functional muscle repair following damage, several other cells such as inflammatory, vascular and mesenchymal cells coordinate muscle regeneration in a finely tuned process. Fibro-Adipogenic Progenitors (FAPs) are a muscle interstitial mesenchymal cell population, which supports SCs differentiation during tissue regeneration. During the first days following muscle injury FAPs undergo massive expansion, which is followed by their macrophage-mediated clearance and the re-establishment of their steady state pool. It is during this critical time window that FAPs, together with the other cellular components of the muscle stem cell niche, establish a dynamic network of interactions that culminate in muscle repair. A number of different molecules have been recently identified as important mediators of this cross-talk, and its alteration has been associated with different muscle pathologies. In this review, we will focus on the soluble factors that regulate FAPs activity, highlighting their roles in orchestrating the inter-cellular interactions between FAPs and the other cell populations that participate in muscle regeneration.

137 citations

Journal ArticleDOI
TL;DR: A subset of genes escapes X inactivation, raising questions about mechanisms that preserve their expression despite being embedded within heterochromatin, and the roles of escape genes in eliciting sex differences in health and disease are discussed.
Abstract: X inactivation represents a complex multi-layer epigenetic mechanism that profoundly modifies chromatin composition and structure of one X chromosome in females. The heterochromatic inactive X chromosome adopts a unique 3D bipartite structure and a location close to the nuclear periphery or the nucleolus. X-linked lncRNA loci and their transcripts play important roles in the recruitment of proteins that catalyze chromatin and DNA modifications for silencing, as well as in the control of chromatin condensation and location of the inactive X chromosome. A subset of genes escapes X inactivation, raising questions about mechanisms that preserve their expression despite being embedded within heterochromatin. Escape gene expression differs between males and females, which can lead to physiological sex differences. We review recent studies that emphasize challenges in understanding the role of lncRNAs in the control of epigenetic modifications, structural features and nuclear positioning of the inactive X chromosome. Second, we highlight new findings about the distribution of genes that escape X inactivation based on single cell studies, and discuss the roles of escape genes in eliciting sex differences in health and disease.

80 citations

Journal ArticleDOI
TL;DR: The stem cell populations that can stimulate muscle regeneration in vitro and in vivo are reviewed and the regenerative potential of combination therapies that utilize both stem cell and biomaterials for the treatment of skeletal muscle injury and disease is discussed.

54 citations

Journal ArticleDOI
TL;DR: FAPs are characterized as the main source of WNT ligands inferring their potential in mediating autocrine/paracrine responses in the muscle niche, and WNT5a, whose expression is impaired in dystrophic FAPs, is identified as a crucial W NT ligand able to restrain the detrimental adipogenic differentiation drift of these cells through the positive modulation of the β-catenin signaling.
Abstract: Fibro/Adipogenic Progenitors (FAPs) are muscle-interstitial progenitors mediating pro-myogenic signals that are critical for muscle homeostasis and regeneration. In myopathies, the autocrine/paracrine constraints controlling FAP adipogenesis are released causing fat infiltrates. Here, by combining pharmacological screening, high-dimensional mass cytometry and in silico network modeling with the integration of single-cell/bulk RNA sequencing data, we highlighted the canonical WNT/GSK/β-catenin signaling as a crucial pathway modulating FAP adipogenesis triggered by insulin signaling. Consistently, pharmacological blockade of GSK3, by the LY2090314 inhibitor, stabilizes β-catenin and represses PPARγ expression abrogating FAP adipogenesis ex vivo while limiting fatty degeneration in vivo. Furthermore, GSK3 inhibition improves the FAP pro-myogenic role by efficiently stimulating, via follistatin secretion, muscle satellite cell (MuSC) differentiation into mature myotubes. Combining, publicly available single-cell RNAseq datasets, we characterize FAPs as the main source of WNT ligands inferring their potential in mediating autocrine/paracrine responses in the muscle niche. Lastly, we identify WNT5a, whose expression is impaired in dystrophic FAPs, as a crucial WNT ligand able to restrain the detrimental adipogenic differentiation drift of these cells through the positive modulation of the β-catenin signaling.

53 citations