scispace - formally typeset
Search or ask a question
Author

Ziwen Tong

Bio: Ziwen Tong is an academic researcher from Yangzhou University. The author has contributed to research in topics: Antibiotic resistance & Antibiotics. The author has an hindex of 6, co-authored 12 publications receiving 61 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the efficacy of multiple clinically relevant bactericidal antibiotics in HFD-fed mice infected with methicillin-resistant Staphylococcus aureus (MRSA) or Escherichia coli.
Abstract: Antibiotic tolerance, the ability of a typically susceptible microorganism to survive extended periods of exposure to antibiotics, has a critical role in chronic and recurrent bacterial infections, and facilitates the evolution of antibiotic resistance. However, the physiological factors that contribute to the development of antibiotic tolerance, particularly in vivo, are not fully known. Despite the fact that a high-fat diet (HFD) is implicated in several human diseases, the relationship between HFD and antibiotic efficacy is still poorly understood. Here, we evaluated the efficacy of multiple clinically relevant bactericidal antibiotics in HFD-fed mice infected with methicillin-resistant Staphylococcus aureus (MRSA) or Escherichia coli. We found that HFD-fed mice had higher bacterial burdens and these bacteria displayed lower susceptibility to bactericidal antibiotic treatment compared with mice that were fed a standard diet, while microbiota-depleted standard-diet- or HFD-fed mice showed similar susceptibility. Faecal microbiota transplantation from HFD-fed mice impaired antibiotic activity in mice fed a standard diet, indicating that alteration of the gut microbiota and related metabolites in HFD-fed mice may account for the decreased antibiotic activity. 16S rRNA sequencing and metabolomics analysis of faecal samples revealed decreased microbial diversity and differential metabolite profiles in HFD-fed mice. Notably, the tryptophan metabolite indole-3-acetic acid (IAA) was significantly decreased in HFD-fed mice. Further in vitro studies showed that IAA supplementation inhibited the formation of bacterial persisters and promoted the elimination of persisters in combination with antibiotic treatment, potentially through the activation of bacterial metabolic pathways. In vivo, the combination of IAA and ciprofloxacin increased the survival rate of HFD-fed mice infected with MRSA persisters. Overall, our data reveal that a HFD has an antagonistic effect on antibiotic treatment in a mouse model, and this is associated with the alteration of the gut microbiota and IAA production. High-fat diet decreases antibiotic efficacy in a mouse model via an altered gut microbiota and decreased indole-3-acetic acid, which potentially converts tolerant bacterial cells into susceptible metabolically active cells.

54 citations

Journal ArticleDOI
TL;DR: Melatonin serves as a promising colistin adjuvant against MCR-positive Gram-negative pathogens and dramatically rescues colist in efficacy in three animal models infected by mcr-1-carrying E. coli.
Abstract: Background: Emergence, prevalence and widely spread of plasmid-mediated colistin resistance in Enterobacteriaceae strongly impairs the clinical efficacy of colistin against life-threatening bacterial infections. Combinations of antibiotics and FDA-approved non-antibiotic agents represent a promising means to address the widespread emergence of antibiotic-resistant pathogens. Methods: Herein, we investigated the synergistic activity between melatonin and antibiotics against MCR (mobilized colistin resistance)-positive Gram-negative pathogens through checkerboard assay and time-killing curve. Molecular mechanisms underlying its mode of action were elucidated. Finally, we assessed the in vivo efficacy of melatonin in combination with colistin against drug-resistant Gram-negative bacteria. Results: Melatonin, which has been approved for treating sleep disturbances and circadian disorders, substantially potentiates the activity of three antibiotics, particularly colistin, against MCR-expressing pathogens without enhancing its toxicity. This is evidence that the combination of colistin with melatonin enhances bacterial outer membrane permeability, promotes oxidative damage and inhibits the effect of efflux pumps. In three animal models infected by mcr-1-carrying E. coli, melatonin dramatically rescues colistin efficacy. Conclusion: Our findings revealed that melatonin serves as a promising colistin adjuvant against MCR-positive Gram-negative pathogens.

45 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a brief overview of the co-evolution of antibiotic discovery and the development of bacterial resistance and uncover the art of repurposing non-antibiotic drugs as potential antibiotic adjuvants.
Abstract: Antimicrobial resistance has been a global health challenge that threatens our ability to control and treat life-threatening bacterial infections. Despite ongoing efforts to identify new drugs or alternatives to antibiotics, no new classes of antibiotic or their alternatives have been clinically approved in the last three decades. A combination of antibiotics and non-antibiotic compounds that could inhibit bacterial resistance determinants or enhance antibiotic activity offers a sustainable and effective strategy to confront multidrug-resistant bacteria. In this review, we provide a brief overview of the co-evolution of antibiotic discovery and the development of bacterial resistance. We summarize drug-drug interactions and uncover the art of repurposing non-antibiotic drugs as potential antibiotic adjuvants, including discussing classification and mechanisms of action, as well as reporting novel screening platforms. A pathogen-by-pathogen approach is then proposed to highlight the critical value of drug repurposing and its therapeutic potential. Finally, general advantages, challenges and development trends of drug combination strategy are discussed.

44 citations

Journal ArticleDOI
Yuan Liu1, Jingru Shi1, Ziwen Tong1, Yuqian Jia1, Bingqing Yang1, Zhiqiang Wang1 
TL;DR: New insights are presented into the biological functions, structural properties, distinct mechanisms of action of AMPs and their resistance determinants, which will expand the understanding of the chemical space of antimicrobials and provide a pipeline for discovering the next-generation of AMP.

39 citations

Journal ArticleDOI
Yuan Liu1, Ziwen Tong1, Jingru Shi1, Yuqian Jia1, Kangni Yang1, Zhiqiang Wang1 
08 Aug 2020
TL;DR: The major pathways of HGT in bacteria, including conjugation, transformation, transduction and vesiduction are summarized and an overview of these compounds capable of promoting the HGT is presented, which guides to the formulation of more reasonable dosing regimens and drug residue standards in clinical practice.
Abstract: The global spread of antibiotic resistance has posed a serious threat to public healthcare and undermined decades of progress made in the fight against bacterial infections. It has been demonstrated that the lack of novel effective antibiotics and rapid spread of antibiotic resistance genes via horizontal transfer in the ecosystem are mainly responsible for this crisis. Notably, plasmid-mediated horizontal transfer of antibiotic resistance genes (ARGs) is recognized as the most dominant dissemination pathway of ARGs in humans, animals and environmental settings. Antibiotic selective pressure has always been regarded as one of the crucial contributors to promoting the dissemination of antibiotic resistance through horizontal gene transfer (HGT). However, the roles of exogenous compounds and particularly non-antibiotic drugs in the spread of ARGs are still underappreciated. In this review, we first summarize the major pathways of HGT in bacteria, including conjugation, transformation, transduction and vesiduction. Subsequently, an overview of these compounds capable of promoting the HGT is presented, which guides to the formulation of more reasonable dosing regimens and drug residue standards in clinical practice. By contrast, these compounds that display an inhibition effect on HGT are also highlighted, which provides a unique strategy to minimize the spread of ARGs. Lastly, we discuss the implementations and challenges in bringing these HGT inhibitors into clinical trials.

34 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive review of the multiple activities and coordination of AMPs in vivo, and to fully understand AMPs to realize their therapeutic prospect is provided, including cell wall action and membrane-targeting action.
Abstract: Antimicrobial peptides (AMPs) are regarded as a new generation of antibiotics. Besides antimicrobial activity, AMPs also have antibiofilm, immune-regulatory, and other activities. Exploring the mechanism of action of AMPs may help in the modification and development of AMPs. Many studies were conducted on the mechanism of AMPs. The present review mainly summarizes the research status on the antimicrobial, anti-inflammatory, and antibiofilm properties of AMPs. This study not only describes the mechanism of cell wall action and membrane-targeting action but also includes the transmembrane mechanism of intracellular action and intracellular action targets. It also discusses the dual mechanism of action reported by a large number of investigations. Antibiofilm and anti-inflammatory mechanisms were described based on the formation of biofilms and inflammation. This study aims to provide a comprehensive review of the multiple activities and coordination of AMPs in vivo, and to fully understand AMPs to realize their therapeutic prospect.

79 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the effects and intrinsic mechanisms of EPs, including microplastics, engineered nanomaterials, disinfection byproducts, pharmaceuticals, and personal care products, on the occurrence and dissemination of ARGs is presented in this paper.

60 citations

Journal ArticleDOI
TL;DR: Tryptophan (Trp) is a scarce and precious amino acid in the cell, such that nature uses it parsimoniously, for multiple but selective functions.
Abstract: Tryptophan (Trp) holds a unique place in biology for a multitude of reasons. It is the largest of all twenty amino acids in the translational toolbox. Its side chain is indole, which is aromatic with a binuclear ring structure, whereas those of Phe, Tyr, and His are single-ring aromatics. In part due to these elaborate structural features, the biosynthetic pathway of Trp is the most complex and the most energy-consuming among all amino acids. Essential in the animal diet, Trp is also the least abundant amino acid in the cell, and one of the rarest in the proteome. In most eukaryotes, Trp is the only amino acid besides Met, which is coded for by a single codon, namely UGG. Due to the large and hydrophobic π-electron surface area, its aromatic side chain interacts with multiple other side chains in the protein, befitting its strategic locations in the protein structure. Finally, several Trp derivatives, namely tryptophylquinone, oxitriptan, serotonin, melatonin, and tryptophol, have specialized functions. Overall, Trp is a scarce and precious amino acid in the cell, such that nature uses it parsimoniously, for multiple but selective functions. Here, the various aspects of the uniqueness of Trp are presented in molecular terms.

58 citations

Journal ArticleDOI
TL;DR: In this article, an up-to-date overview of the most recent studies investigating inorganic NPs and their integration into composite films designed for antimicrobial therapies is provided, which can be incorporated or attached to organic/inorganic films, thus broadening their application within implant or catheter coatings and wound dressings.
Abstract: The development of drug-resistant microorganisms has become a critical issue for modern medicine and drug discovery and development with severe socio-economic and ecological implications. Since standard and conventional treatment options are generally inefficient, leading to infection persistence and spreading, novel strategies are fundamentally necessary in order to avoid serious global health problems. In this regard, both metal and metal oxide nanoparticles (NPs) demonstrated increased effectiveness as nanobiocides due to intrinsic antimicrobial properties and as nanocarriers for antimicrobial drugs. Among them, gold, silver, copper, zinc oxide, titanium oxide, magnesium oxide, and iron oxide NPs are the most preferred, owing to their proven antimicrobial mechanisms and bio/cytocompatibility. Furthermore, inorganic NPs can be incorporated or attached to organic/inorganic films, thus broadening their application within implant or catheter coatings and wound dressings. In this context, this paper aims to provide an up-to-date overview of the most recent studies investigating inorganic NPs and their integration into composite films designed for antimicrobial therapies.

55 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated the efficacy of multiple clinically relevant bactericidal antibiotics in HFD-fed mice infected with methicillin-resistant Staphylococcus aureus (MRSA) or Escherichia coli.
Abstract: Antibiotic tolerance, the ability of a typically susceptible microorganism to survive extended periods of exposure to antibiotics, has a critical role in chronic and recurrent bacterial infections, and facilitates the evolution of antibiotic resistance. However, the physiological factors that contribute to the development of antibiotic tolerance, particularly in vivo, are not fully known. Despite the fact that a high-fat diet (HFD) is implicated in several human diseases, the relationship between HFD and antibiotic efficacy is still poorly understood. Here, we evaluated the efficacy of multiple clinically relevant bactericidal antibiotics in HFD-fed mice infected with methicillin-resistant Staphylococcus aureus (MRSA) or Escherichia coli. We found that HFD-fed mice had higher bacterial burdens and these bacteria displayed lower susceptibility to bactericidal antibiotic treatment compared with mice that were fed a standard diet, while microbiota-depleted standard-diet- or HFD-fed mice showed similar susceptibility. Faecal microbiota transplantation from HFD-fed mice impaired antibiotic activity in mice fed a standard diet, indicating that alteration of the gut microbiota and related metabolites in HFD-fed mice may account for the decreased antibiotic activity. 16S rRNA sequencing and metabolomics analysis of faecal samples revealed decreased microbial diversity and differential metabolite profiles in HFD-fed mice. Notably, the tryptophan metabolite indole-3-acetic acid (IAA) was significantly decreased in HFD-fed mice. Further in vitro studies showed that IAA supplementation inhibited the formation of bacterial persisters and promoted the elimination of persisters in combination with antibiotic treatment, potentially through the activation of bacterial metabolic pathways. In vivo, the combination of IAA and ciprofloxacin increased the survival rate of HFD-fed mice infected with MRSA persisters. Overall, our data reveal that a HFD has an antagonistic effect on antibiotic treatment in a mouse model, and this is associated with the alteration of the gut microbiota and IAA production. High-fat diet decreases antibiotic efficacy in a mouse model via an altered gut microbiota and decreased indole-3-acetic acid, which potentially converts tolerant bacterial cells into susceptible metabolically active cells.

54 citations