scispace - formally typeset
Search or ask a question
Author

Ziyi Li

Bio: Ziyi Li is an academic researcher from University of Texas MD Anderson Cancer Center. The author has contributed to research in topics: Medicine & Computer science. The author has an hindex of 9, co-authored 28 publications receiving 368 citations. Previous affiliations of Ziyi Li include Yale University & Emory University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that FTO is expressed in adult neural stem cells and neurons and displays dynamic expression during postnatal neurodevelopment and this results suggest FTO plays important roles in neurogenesis, as well as in learning and memory.
Abstract: Fat mass and obesity-associated gene (FTO) is a member of the Fe (II)- and oxoglutarate-dependent AlkB dioxygenase family and is linked to both obesity and intellectual disability. The role of FTO in neurodevelopment and neurogenesis, however, remains largely unknown. Here we show that FTO is expressed in adult neural stem cells and neurons and displays dynamic expression during postnatal neurodevelopment. The loss of FTO leads to decreased brain size and body weight. We find that FTO deficiency could reduce the proliferation and neuronal differentiation of adult neural stem cells in vivo, which leads to impaired learning and memory. Given the role of FTO as a demethylase of N6-methyladenosine (m6A), we went on to perform genome-wide m6A profiling and observed dynamic m6A modification during postnatal neurodevelopment. The loss of FTO led to the altered expression of several key components of the brain derived neurotrophic factor pathway that were marked by m6A. These results together suggest FTO plays important roles in neurogenesis, as well as in learning and memory.

194 citations

Journal ArticleDOI
TL;DR: One of the most comprehensive and longest follow-up analyses of patients treated with aortic endografts is presented and indicates endoleaks and aneurysm diameter enlargement were not associated with excess mortality compared with those without these features.

111 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed an FXS human forebrain organoid model and observed that the loss of FMRP led to dysregulated neurogenesis, neuronal maturation and neuronal excitability.
Abstract: Fragile X syndrome (FXS) is caused by the loss of fragile X mental retardation protein (FMRP), an RNA-binding protein that can regulate the translation of specific mRNAs. In this study, we developed an FXS human forebrain organoid model and observed that the loss of FMRP led to dysregulated neurogenesis, neuronal maturation and neuronal excitability. Bulk and single-cell gene expression analyses of FXS forebrain organoids revealed that the loss of FMRP altered gene expression in a cell-type-specific manner. The developmental deficits in FXS forebrain organoids could be rescued by inhibiting the phosphoinositide 3-kinase pathway but not the metabotropic glutamate pathway disrupted in the FXS mouse model. We identified a large number of human-specific mRNAs bound by FMRP. One of these human-specific FMRP targets, CHD2, contributed to the altered gene expression in FXS organoids. Collectively, our study revealed molecular, cellular and electrophysiological abnormalities associated with the loss of FMRP during human brain development.

52 citations

Journal ArticleDOI
Ziyi Li1, Hao Wu1
TL;DR: A novel computational method is developed to improve reference-free deconvolution, which iteratively searches for cell type-specific features and performs composition estimation.
Abstract: In the analysis of high-throughput data from complex samples, cell composition is an important factor that needs to be accounted for. Except for a limited number of tissues with known pure cell type profiles, a majority of genomics and epigenetics data relies on the “reference-free deconvolution” methods to estimate cell composition. We develop a novel computational method to improve reference-free deconvolution, which iteratively searches for cell type-specific features and performs composition estimation. Simulation studies and applications to six real datasets including both DNA methylation and gene expression data demonstrate favorable performance of the proposed method. TOAST is available at https://bioconductor.org/packages/TOAST .

49 citations

Journal ArticleDOI
TL;DR: It is shown that chronic restraint stress induced depression-like behavior in mice and resulted in a 5hmC reduction in prefrontal cortex (PFC), and the results suggest that TET1 could regulate stress-induced response by interacting with HIFIα.

46 citations


Cited by
More filters
01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

Journal ArticleDOI
TL;DR: It is shown that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and the effects of data distribution across collaborating institutions on model quality and learning patterns are investigated.
Abstract: Several studies underscore the potential of deep learning in identifying complex patterns, leading to diagnostic and prognostic biomarkers. Identifying sufficiently large and diverse datasets, required for training, is a significant challenge in medicine and can rarely be found in individual institutions. Multi-institutional collaborations based on centrally-shared patient data face privacy and ownership challenges. Federated learning is a novel paradigm for data-private multi-institutional collaborations, where model-learning leverages all available data without sharing data between institutions, by distributing the model-training to the data-owners and aggregating their results. We show that federated learning among 10 institutions results in models reaching 99% of the model quality achieved with centralized data, and evaluate generalizability on data from institutions outside the federation. We further investigate the effects of data distribution across collaborating institutions on model quality and learning patterns, indicating that increased access to data through data private multi-institutional collaborations can benefit model quality more than the errors introduced by the collaborative method. Finally, we compare with other collaborative-learning approaches demonstrating the superiority of federated learning, and discuss practical implementation considerations. Clinical adoption of federated learning is expected to lead to models trained on datasets of unprecedented size, hence have a catalytic impact towards precision/personalized medicine.

526 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems.
Abstract: N6-methyladenosine (m6A) is the most prevalent, abundant and conserved internal cotranscriptional modification in eukaryotic RNAs, especially within higher eukaryotic cells. m6A modification is modified by the m6A methyltransferases, or writers, such as METTL3/14/16, RBM15/15B, ZC3H3, VIRMA, CBLL1, WTAP, and KIAA1429, and, removed by the demethylases, or erasers, including FTO and ALKBH5. It is recognized by m6A-binding proteins YTHDF1/2/3, YTHDC1/2 IGF2BP1/2/3 and HNRNPA2B1, also known as “readers”. Recent studies have shown that m6A RNA modification plays essential role in both physiological and pathological conditions, especially in the initiation and progression of different types of human cancers. In this review, we discuss how m6A RNA methylation influences both the physiological and pathological progressions of hematopoietic, central nervous and reproductive systems. We will mainly focus on recent progress in identifying the biological functions and the underlying molecular mechanisms of m6A RNA methylation, its regulators and downstream target genes, during cancer progression in above systems. We propose that m6A RNA methylation process offer potential targets for cancer therapy in the future.

425 citations

Journal ArticleDOI
01 Mar 2021
TL;DR: In this article, the authors provide a review of federated learning in the biomedical space, and summarize the general solutions to the statistical challenges, system challenges, and privacy issues in federated Learning, and point out the implications and potentials in healthcare.
Abstract: With the rapid development of computer software and hardware technologies, more and more healthcare data are becoming readily available from clinical institutions, patients, insurance companies, and pharmaceutical industries, among others. This access provides an unprecedented opportunity for data science technologies to derive data-driven insights and improve the quality of care delivery. Healthcare data, however, are usually fragmented and private making it difficult to generate robust results across populations. For example, different hospitals own the electronic health records (EHR) of different patient populations and these records are difficult to share across hospitals because of their sensitive nature. This creates a big barrier for developing effective analytical approaches that are generalizable, which need diverse, "big data." Federated learning, a mechanism of training a shared global model with a central server while keeping all the sensitive data in local institutions where the data belong, provides great promise to connect the fragmented healthcare data sources with privacy-preservation. The goal of this survey is to provide a review for federated learning technologies, particularly within the biomedical space. In particular, we summarize the general solutions to the statistical challenges, system challenges, and privacy issues in federated learning, and point out the implications and potentials in healthcare.

396 citations