scispace - formally typeset
Search or ask a question
Author

Zongheng Yang

Other affiliations: Google
Bio: Zongheng Yang is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Computer science & Reinforcement learning. The author has an hindex of 15, co-authored 24 publications receiving 4263 citations. Previous affiliations of Zongheng Yang include Google.

Papers
More filters
Proceedings ArticleDOI
15 Apr 2018
TL;DR: Tacotron 2, a neural network architecture for speech synthesis directly from text that is composed of a recurrent sequence-to-sequence feature prediction network that maps character embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize time-domain waveforms from those Spectrograms is described.
Abstract: This paper describes Tacotron 2, a neural network architecture for speech synthesis directly from text. The system is composed of a recurrent sequence-to-sequence feature prediction network that maps character embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize time-domain waveforms from those spectrograms. Our model achieves a mean opinion score (MOS) of 4.53 comparable to a MOS of 4.58 for professionally recorded speech. To validate our design choices, we present ablation studies of key components of our system and evaluate the impact of using mel spectrograms as the conditioning input to WaveNet instead of linguistic, duration, and $F_{0}$ features. We further show that using this compact acoustic intermediate representation allows for a significant reduction in the size of the WaveNet architecture.

2,039 citations

Proceedings ArticleDOI
20 Aug 2017
TL;DR: Tacotron as mentioned in this paper is an end-to-end generative text to speech model that synthesizes speech directly from characters, given pairs, the model can be trained completely from scratch with random initialization.
Abstract: A text-to-speech synthesis system typically consists of multiple stages, such as a text analysis frontend, an acoustic model and an audio synthesis module. Building these components often requires extensive domain expertise and may contain brittle design choices. In this paper, we present Tacotron, an end-to-end generative text-to-speech model that synthesizes speech directly from characters. Given pairs, the model can be trained completely from scratch with random initialization. We present several key techniques to make the sequence-to-sequence framework perform well for this challenging task. Tacotron achieves a 3.82 subjective 5-scale mean opinion score on US English, outperforming a production parametric system in terms of naturalness. In addition, since Tacotron generates speech at the frame level, it's substantially faster than sample-level autoregressive methods.

1,144 citations

Posted Content
TL;DR: Tacotron 2 as mentioned in this paper uses a recurrent sequence-to-sequence feature prediction network that maps character embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize timedomain waveforms.
Abstract: This paper describes Tacotron 2, a neural network architecture for speech synthesis directly from text. The system is composed of a recurrent sequence-to-sequence feature prediction network that maps character embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize timedomain waveforms from those spectrograms. Our model achieves a mean opinion score (MOS) of $4.53$ comparable to a MOS of $4.58$ for professionally recorded speech. To validate our design choices, we present ablation studies of key components of our system and evaluate the impact of using mel spectrograms as the input to WaveNet instead of linguistic, duration, and $F_0$ features. We further demonstrate that using a compact acoustic intermediate representation enables significant simplification of the WaveNet architecture.

733 citations

Proceedings ArticleDOI
08 Oct 2018
TL;DR: Ray as mentioned in this paper is a distributed system that implements a unified interface that can express both task-parallel and actor-based computations, supported by a single dynamic execution engine and employs a distributed scheduler and a distributed and fault-tolerant store to manage the control state.
Abstract: The next generation of AI applications will continuously interact with the environment and learn from these interactions. These applications impose new and demanding systems requirements, both in terms of performance and flexibility. In this paper, we consider these requirements and present Ray--a distributed system to address them. Ray implements a unified interface that can express both task-parallel and actor-based computations, supported by a single dynamic execution engine. To meet the performance requirements, Ray employs a distributed scheduler and a distributed and fault-tolerant store to manage the system's control state. In our experiments, we demonstrate scaling beyond 1.8 million tasks per second and better performance than existing specialized systems for several challenging reinforcement learning applications.

600 citations

Posted Content
TL;DR: Tacotron is presented, an end-to-end generative text- to-speech model that synthesizes speech directly from characters that achieves a 3.82 subjective 5-scale mean opinion score on US English, outperforming a production parametric system in terms of naturalness.
Abstract: A text-to-speech synthesis system typically consists of multiple stages, such as a text analysis frontend, an acoustic model and an audio synthesis module. Building these components often requires extensive domain expertise and may contain brittle design choices. In this paper, we present Tacotron, an end-to-end generative text-to-speech model that synthesizes speech directly from characters. Given pairs, the model can be trained completely from scratch with random initialization. We present several key techniques to make the sequence-to-sequence framework perform well for this challenging task. Tacotron achieves a 3.82 subjective 5-scale mean opinion score on US English, outperforming a production parametric system in terms of naturalness. In addition, since Tacotron generates speech at the frame level, it's substantially faster than sample-level autoregressive methods.

538 citations


Cited by
More filters
Posted Content
TL;DR: New design-criteria for next-generation hyperparameter optimization software are introduced, including define-by-run API that allows users to construct the parameter search space dynamically, and easy-to-setup, versatile architecture that can be deployed for various purposes.
Abstract: The purpose of this study is to introduce new design-criteria for next-generation hyperparameter optimization software. The criteria we propose include (1) define-by-run API that allows users to construct the parameter search space dynamically, (2) efficient implementation of both searching and pruning strategies, and (3) easy-to-setup, versatile architecture that can be deployed for various purposes, ranging from scalable distributed computing to light-weight experiment conducted via interactive interface. In order to prove our point, we will introduce Optuna, an optimization software which is a culmination of our effort in the development of a next generation optimization software. As an optimization software designed with define-by-run principle, Optuna is particularly the first of its kind. We will present the design-techniques that became necessary in the development of the software that meets the above criteria, and demonstrate the power of our new design through experimental results and real world applications. Our software is available under the MIT license (this https URL).

1,448 citations

Posted Content
TL;DR: This work proposes the convolution-augmented transformer for speech recognition, named Conformer, which significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies.
Abstract: Recently Transformer and Convolution neural network (CNN) based models have shown promising results in Automatic Speech Recognition (ASR), outperforming Recurrent neural networks (RNNs). Transformer models are good at capturing content-based global interactions, while CNNs exploit local features effectively. In this work, we achieve the best of both worlds by studying how to combine convolution neural networks and transformers to model both local and global dependencies of an audio sequence in a parameter-efficient way. To this regard, we propose the convolution-augmented transformer for speech recognition, named Conformer. Conformer significantly outperforms the previous Transformer and CNN based models achieving state-of-the-art accuracies. On the widely used LibriSpeech benchmark, our model achieves WER of 2.1%/4.3% without using a language model and 1.9%/3.9% with an external language model on test/testother. We also observe competitive performance of 2.7%/6.3% with a small model of only 10M parameters.

1,270 citations

Proceedings Article
17 Jun 2020
TL;DR: In this paper, the authors propose to leverage periodic activation functions for implicit neural representations and demonstrate that these networks, dubbed sinusoidal representation networks or Sirens, are ideally suited for representing complex natural signals and their derivatives.
Abstract: Implicitly defined, continuous, differentiable signal representations parameterized by neural networks have emerged as a powerful paradigm, offering many possible benefits over conventional representations. However, current network architectures for such implicit neural representations are incapable of modeling signals with fine detail, and fail to represent a signal's spatial and temporal derivatives, despite the fact that these are essential to many physical signals defined implicitly as the solution to partial differential equations. We propose to leverage periodic activation functions for implicit neural representations and demonstrate that these networks, dubbed sinusoidal representation networks or Sirens, are ideally suited for representing complex natural signals and their derivatives. We analyze Siren activation statistics to propose a principled initialization scheme and demonstrate the representation of images, wavefields, video, sound, and their derivatives. Further, we show how Sirens can be leveraged to solve challenging boundary value problems, such as particular Eikonal equations (yielding signed distance functions), the Poisson equation, and the Helmholtz and wave equations. Lastly, we combine Sirens with hypernetworks to learn priors over the space of Siren functions.

1,058 citations

Journal ArticleDOI
TL;DR: This paper bridges the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas, and provides an encyclopedic review of mobile and Wireless networking research based on deep learning, which is categorize by different domains.
Abstract: The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques, in order to help manage the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper, we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.

975 citations

Posted Content
TL;DR: Tacotron 2 as mentioned in this paper uses a recurrent sequence-to-sequence feature prediction network that maps character embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize timedomain waveforms.
Abstract: This paper describes Tacotron 2, a neural network architecture for speech synthesis directly from text. The system is composed of a recurrent sequence-to-sequence feature prediction network that maps character embeddings to mel-scale spectrograms, followed by a modified WaveNet model acting as a vocoder to synthesize timedomain waveforms from those spectrograms. Our model achieves a mean opinion score (MOS) of $4.53$ comparable to a MOS of $4.58$ for professionally recorded speech. To validate our design choices, we present ablation studies of key components of our system and evaluate the impact of using mel spectrograms as the input to WaveNet instead of linguistic, duration, and $F_0$ features. We further demonstrate that using a compact acoustic intermediate representation enables significant simplification of the WaveNet architecture.

733 citations