scispace - formally typeset
Search or ask a question
Author

Zwi N. Berneman

Bio: Zwi N. Berneman is an academic researcher from University of Antwerp. The author has contributed to research in topics: Immunotherapy & Immune system. The author has an hindex of 58, co-authored 351 publications receiving 15198 citations. Previous affiliations of Zwi N. Berneman include University of Queensland & Casa Sollievo della Sofferenza.


Papers
More filters
Journal ArticleDOI
TL;DR: This review provides an overview of deregulation of the cell cycle in cancer by focusing on mechanisms, i.e. regulation of cyclin‐dependent kinases (CDK) by cyclins, CDK inhibitors and phosphorylating events.
Abstract: The cell cycle is controlled by numerous mechanisms ensuring correct cell division. This review will focus on these mechanisms, i.e. regulation of cyclin-dependent kinases (CDK) by cyclins, CDK inhibitors and phosphorylating events. The quality checkpoints activated after DNA damage are also discussed. The complexity of the regulation of the cell cycle is also reflected in the different alterations leading to aber- rant cell proliferation and development of cancer. Consequently, targeting the cell cycle in general and CDK in particular presents unique opportunities for drug discovery. This review provides an overview of deregulation of the cell cycle in cancer. Different families of known CDK inhibitors acting by ATP competition are also discussed. Cur- rently, at least three compounds with CDK inhibitory activity (flavopiridol, UCN-01, roscovitine) have entered clinical trials.

1,671 citations

Journal ArticleDOI
28 May 2009-Blood
TL;DR: Nonadherence is more prevalent than patients, physicians, and family members believe it is, and therefore should be assessed routinely, and is associated with poorer response to imatinib.

550 citations

Journal ArticleDOI
TL;DR: The clinical effectiveness of dendritic cell-based vaccine therapy in melanoma, prostate cancer, malignant glioma, and renal cell carcinoma is reviewed, and the most important lessons from almost two decades of clinical studies are summarized.
Abstract: Summary Since the mid-1990s, dendritic cells have been used in clinical trials as cellular mediators for therapeutic vaccination of patients with cancer. Dendritic cell-based immunotherapy is safe and can induce antitumour immunity, even in patients with advanced disease. However, clinical responses have been disappointing, with classic objective tumour response rates rarely exceeding 15%. Paradoxically, findings from emerging research indicate that dendritic cell-based vaccination might improve survival, advocating implementation of alternative endpoints to assess the true clinical potency of dendritic cell-based vaccination. We review the clinical effectiveness of dendritic cell-based vaccine therapy in melanoma, prostate cancer, malignant glioma, and renal cell carcinoma, and summarise the most important lessons from almost two decades of clinical studies of dendritic cell-based immunotherapy in these malignant disorders. We also address how the specialty is evolving, and which new therapeutic concepts are being translated into clinical trials to leverage the clinical effectiveness of dendritic cell-based cancer immunotherapy. Specifically, we discuss two main trends: the implementation of the next-generation dendritic cell vaccines that have improved immunogenicity, and the emerging paradigm of combination of dendritic cell vaccination with other cancer therapies.

547 citations

Journal ArticleDOI
01 Jul 2001-Blood
TL;DR: The data clearly demonstrate that Mo-DCs electroporated with mRNA efficiently present functional antigenic peptides to cytotoxic T cells and could serve applications in future DC-based tumor vaccines.

529 citations

Journal ArticleDOI
TL;DR: This review summarizes the different functions of the proteins presently known to control both apoptosis and cell cycle progression and suggests that these important decisions of cell proliferation or cell death are likely to be controlled by more than one signal and are necessary to ensure a proper cellular response.
Abstract: Apoptosis and proliferation are intimately coupled. Some cell cycle regulators can influence both cell division and programmed cell death. The linkage of cell cycle and apoptosis has been recognized for c-Myc, p53, pRb, Ras, PKA, PKC, Bcl-2, NF-kappa B, CDK, cyclins and CKI. This review summarizes the different functions of the proteins presently known to control both apoptosis and cell cycle progression. These proteins can influence apoptosis or proliferation but different variables, including cell type, cellular environment and genetic background, make it difficult to predict the outcome of cell proliferation, cell cycle arrest or cell death. These important decisions of cell proliferation or cell death are likely to be controlled by more than one signal and are necessary to ensure a proper cellular response.

424 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The American Cancer Society estimated the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute and mortality data from National Center for Health Statistics as discussed by the authors.
Abstract: Each year, the American Cancer Society estimates the number of new cancer cases and deaths expected in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival based on incidence data from the National Cancer Institute and mortality data from the National Center for Health Statistics. Incidence and death rates are age-standardized to the 2000 US standard million population. A total of 1,399,790 new cancer cases and 564,830 deaths from cancer are expected in the United States in 2006. When deaths are aggregated by age, cancer has surpassed heart disease as the leading cause of death for those younger than age 85 since 1999. Delay-adjusted cancer incidence rates stabilized in men from 1995 through 2002, but continued to increase by 0.3% per year from 1987 through 2002 in women. Between 2002 and 2003, the actual number of recorded cancer deaths decreased by 778 in men, but increased by 409 in women, resulting in a net decrease of 369, the first decrease in the total number of cancer deaths since national mortality record keeping was instituted in 1930. The death rate from all cancers combined has decreased by 1.5% per year since 1993 among men and by 0.8% per year since 1992 among women. The mortality rate has also continued to decrease for the three most common cancer sites in men (lung and bronchus, colon and rectum, and prostate) and for breast and colon and rectum cancers in women. Lung cancer mortality among women continues to increase slightly. In analyses by race and ethnicity, African American men and women have 40% and 18% higher death rates from all cancers combined than White men and women, respectively. Cancer incidence and death rates are lower in other racial and ethnic groups than in Whites and African Americans for all sites combined and for the four major cancer sites. However, these groups generally have higher rates for stomach, liver, and cervical cancers than Whites. Furthermore, minority populations are more likely to be diagnosed with advanced stage disease than are Whites. Progress in reducing the burden of suffering and death from cancer can be accelerated by applying existing cancer control knowledge across all segments of the population.

5,087 citations

Journal ArticleDOI
15 Dec 1995-Science
TL;DR: Recombinant human RANTES, Mip-1α, and MIP-1β induced a dose-dependent inhibition of different strains of HIV-1, HIV-2, and simian immunodeficiency virus (SIV) and may have relevance for the prevention and therapy of AIDS.
Abstract: Evidence suggests that CD8 + T lymphocytes are involved in the control of human immunodeficiency virus (HIV) infection in vivo, either by cytolytic mechanisms or by the release of HIV-suppressive factors (HIV-SF). The chemokines RANTES, MIP-1α, and MIP-1β were identified as the major HIV-SF produced by CD8 + T cells. Two active proteins purified from the culture supernatant of an immortalized CD8 + T cell clone revealed sequence identity with human RANTES and MIP-1α. RANTES, MIP-1α, and MIP-1β were released by both immortalized and primary CD8 + T cells. HIV-SF activity produced by these cells was completely blocked by a combination of neutralizing antibodies against RANTES, MIP-1α, and MIP-1β. Recombinant human RANTES, MIP-1α, and MIP-1β induced a dose-dependent inhibition of different strains of HIV-1, HIV-2, and simian immunodeficiency virus (SIV). These data may have relevance for the prevention and therapy of AIDS.

2,894 citations