scispace - formally typeset
Search or ask a question
Conference

Computer and Communications Security 

About: Computer and Communications Security is an academic conference. The conference publishes majorly in the area(s): Encryption & Cryptography. Over the lifetime, 3920 publications have been published by the conference receiving 310020 citations.


Papers
More filters
Proceedings ArticleDOI
Mihir Bellare1, Phillip Rogaway1
01 Dec 1993
TL;DR: It is argued that the random oracles model—where all parties have access to a public random oracle—provides a bridge between cryptographic theory and cryptographic practice, and yields protocols much more efficient than standard ones while retaining many of the advantages of provable security.
Abstract: We argue that the random oracle model—where all parties have access to a public random oracle—provides a bridge between cryptographic theory and cryptographic practice. In the paradigm we suggest, a practical protocol P is produced by first devising and proving correct a protocol PR for the random oracle model, and then replacing oracle accesses by the computation of an “appropriately chosen” function h. This paradigm yields protocols much more efficient than standard ones while retaining many of the advantages of provable security. We illustrate these gains for problems including encryption, signatures, and zero-knowledge proofs.

5,313 citations

Proceedings ArticleDOI
30 Oct 2006
TL;DR: This work develops a new cryptosystem for fine-grained sharing of encrypted data that is compatible with Hierarchical Identity-Based Encryption (HIBE), and demonstrates the applicability of the construction to sharing of audit-log information and broadcast encryption.
Abstract: As more sensitive data is shared and stored by third-party sites on the Internet, there will be a need to encrypt data stored at these sites. One drawback of encrypting data, is that it can be selectively shared only at a coarse-grained level (i.e., giving another party your private key). We develop a new cryptosystem for fine-grained sharing of encrypted data that we call Key-Policy Attribute-Based Encryption (KP-ABE). In our cryptosystem, ciphertexts are labeled with sets of attributes and private keys are associated with access structures that control which ciphertexts a user is able to decrypt. We demonstrate the applicability of our construction to sharing of audit-log information and broadcast encryption. Our construction supports delegation of private keys which subsumesHierarchical Identity-Based Encryption (HIBE).

4,257 citations

Proceedings ArticleDOI
18 Nov 2002
TL;DR: A key-management scheme designed to satisfy both operational and security requirements of DSNs is presented, which relies on probabilistic key sharing among the nodes of a random graph and uses simple protocols for shared-key discovery and path-key establishment, and for key revocation, re-keying, and incremental addition of nodes.
Abstract: Distributed Sensor Networks (DSNs) are ad-hoc mobile networks that include sensor nodes with limited computation and communication capabilities. DSNs are dynamic in the sense that they allow addition and deletion of sensor nodes after deployment to grow the network or replace failing and unreliable nodes. DSNs may be deployed in hostile areas where communication is monitored and nodes are subject to capture and surreptitious use by an adversary. Hence DSNs require cryptographic protection of communications, sensor-capture detection, key revocation and sensor disabling. In this paper, we present a key-management scheme designed to satisfy both operational and security requirements of DSNs. The scheme includes selective distribution and revocation of keys to sensor nodes as well as node re-keying without substantial computation and communication capabilities. It relies on probabilistic key sharing among the nodes of a random graph and uses simple protocols for shared-key discovery and path-key establishment, and for key revocation, re-keying, and incremental addition of nodes. The security and network connectivity characteristics supported by the key-management scheme are discussed and simulation experiments presented.

3,900 citations

Proceedings ArticleDOI
24 Oct 2016
TL;DR: In this paper, the authors develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy, and demonstrate that they can train deep neural networks with nonconvex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality.
Abstract: Machine learning techniques based on neural networks are achieving remarkable results in a wide variety of domains. Often, the training of models requires large, representative datasets, which may be crowdsourced and contain sensitive information. The models should not expose private information in these datasets. Addressing this goal, we develop new algorithmic techniques for learning and a refined analysis of privacy costs within the framework of differential privacy. Our implementation and experiments demonstrate that we can train deep neural networks with non-convex objectives, under a modest privacy budget, and at a manageable cost in software complexity, training efficiency, and model quality.

2,944 citations

Proceedings ArticleDOI
02 Apr 2017
TL;DR: This work introduces the first practical demonstration of an attacker controlling a remotely hosted DNN with no such knowledge, and finds that this black-box attack strategy is capable of evading defense strategies previously found to make adversarial example crafting harder.
Abstract: Machine learning (ML) models, e.g., deep neural networks (DNNs), are vulnerable to adversarial examples: malicious inputs modified to yield erroneous model outputs, while appearing unmodified to human observers. Potential attacks include having malicious content like malware identified as legitimate or controlling vehicle behavior. Yet, all existing adversarial example attacks require knowledge of either the model internals or its training data. We introduce the first practical demonstration of an attacker controlling a remotely hosted DNN with no such knowledge. Indeed, the only capability of our black-box adversary is to observe labels given by the DNN to chosen inputs. Our attack strategy consists in training a local model to substitute for the target DNN, using inputs synthetically generated by an adversary and labeled by the target DNN. We use the local substitute to craft adversarial examples, and find that they are misclassified by the targeted DNN. To perform a real-world and properly-blinded evaluation, we attack a DNN hosted by MetaMind, an online deep learning API. We find that their DNN misclassifies 84.24% of the adversarial examples crafted with our substitute. We demonstrate the general applicability of our strategy to many ML techniques by conducting the same attack against models hosted by Amazon and Google, using logistic regression substitutes. They yield adversarial examples misclassified by Amazon and Google at rates of 96.19% and 88.94%. We also find that this black-box attack strategy is capable of evading defense strategies previously found to make adversarial example crafting harder.

2,712 citations

Performance
Metrics
No. of papers from the Conference in previous years
YearPapers
2021300
2020287
2019293
2018272
2017304
2016306