scispace - formally typeset
Search or ask a question
Conference

Design Automation Conference 

About: Design Automation Conference is an academic conference. The conference publishes majorly in the area(s): Electronic design automation & Routing (electronic design automation). Over the lifetime, 11278 publications have been published by the conference receiving 328146 citations.


Papers
More filters
Proceedings ArticleDOI
22 Jun 2001
TL;DR: This paper introduces the concept of on-chip networks, sketches a simple network, and discusses some challenges in the architecture and design of these networks.
Abstract: Using on-chip interconnection networks in place of ad-hoc glo-bal wiring structures the top level wires on a chip and facilitates modular design. With this approach, system modules (processors, memories, peripherals, etc...) communicate by sending packets to one another over the network. The structured network wiring gives well-controlled electrical parameters that eliminate timing iterations and enable the use of high-performance circuits to reduce latency and increase bandwidth. The area overhead required to implement an on-chip network is modest, we estimate 6.6%. This paper introduces the concept of on-chip networks, sketches a simple network, and discusses some challenges in the architecture and design of these networks.

3,209 citations

Proceedings ArticleDOI
22 Jun 2001
TL;DR: The development of a new complete solver, Chaff, is described which achieves significant performance gains through careful engineering of all aspects of the search-especially a particularly efficient implementation of Boolean constraint propagation (BCP) and a novel low overhead decision strategy.
Abstract: Boolean satisfiability is probably the most studied of the combinatorial optimization/search problems. Significant effort has been devoted to trying to provide practical solutions to this problem for problem instances encountered in a range of applications in electronic design automation (EDA), as well as in artificial intelligence (AI). This study has culminated in the development of several SAT packages, both proprietary and in the public domain (e.g. GRASP, SATO) which find significant use in both research and industry. Most existing complete solvers are variants of the Davis-Putnam (DP) search algorithm. In this paper we describe the development of a new complete solver, Chaff which achieves significant performance gains through careful engineering of all aspects of the search-especially a particularly efficient implementation of Boolean constraint propagation (BCP) and a novel low overhead decision strategy. Chaff has been able to obtain one to two orders of magnitude performance improvement on difficult SAT benchmarks in comparison with other solvers (DP or otherwise), including GRASP and SATO.

2,886 citations

Proceedings ArticleDOI
01 Jan 1982
TL;DR: An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network.
Abstract: An iterative mincut heuristic for partitioning networks is presented whose worst case computation time, per pass, grows linearly with the size of the network. In practice, only a very small number of passes are typically needed, leading to a fast approximation algorithm for mincut partitioning. To deal with cells of various sizes, the algorithm progresses by moving one cell at a time between the blocks of the partition while maintaining a desired balance based on the size of the blocks rather than the number of cells per block. Efficient data structures are used to avoid unnecessary searching for the best cell to move and to minimize unnecessary updating of cells affected by each move.

2,463 citations

Proceedings ArticleDOI
04 Jun 2007
TL;DR: This work presents PUF designs that exploit inherent delay characteristics of wires and transistors that differ from chip to chip, and describes how PUFs can enable low-cost authentication of individual ICs and generate volatile secret keys for cryptographic operations.
Abstract: Physical Unclonable Functions (PUFs) are innovative circuit primitives that extract secrets from physical characteristics of integrated circuits (ICs). We present PUF designs that exploit inherent delay characteristics of wires and transistors that differ from chip to chip, and describe how PUFs can enable low-cost authentication of individual ICs and generate volatile secret keys for cryptographic operations.

2,014 citations

Proceedings Article
01 Jan 2007

1,944 citations

Performance
Metrics
No. of papers from the Conference in previous years
YearPapers
202290
2021256
2020324
2019335
2018292
2017266