scispace - formally typeset
Search or ask a question
Conference

Energy Conversion Congress and Exposition 

About: Energy Conversion Congress and Exposition is an academic conference. The conference publishes majorly in the area(s): Boost converter & Inverter. Over the lifetime, 2873 publications have been published by the conference receiving 51613 citations.

Papers published on a yearly basis

Papers
More filters
Proceedings ArticleDOI
01 Nov 2010
TL;DR: In this article, an operating mode for low phase current frequencies which enables MMLCs to magnetize and start induction machines with quadratic torque loads is presented and the achievable torque-speed characteristic is derived.
Abstract: Modular Multilevel Converters (MMLC) based on series connected half-bridges achieve high phase voltages, need little or no filters and feature redundancy and modularity. In contrast to the similar series connected H-bridge converters an expensive and lossy transformer is not necessary. The capacitors buffer power fluctuations at fundamental and second harmonic frequency, therefore the capacitor voltage ripple magnitude increases with decreasing phase current frequencies and will become infinite at zero phase current frequency. This is a problem in variable speed drive applications where phase current frequencies from starting from zero are needed. An operating mode for low phase current frequencies which enables MMLCs to magnetize and start induction machines with quadratic torque loads is presented and the achievable torque-speed characteristic is derived. It is also shown that rotor flux optimization also reduces the capacitor voltage ripple at low torque. The method has successfully been tested in an experimental converter.

416 citations

Journal ArticleDOI
01 Nov 2010
TL;DR: In this paper, the inherent damping characteristic of LCL filters for three-phase grid-connected voltage source inverters is investigated, and a general design guideline for choosing values of grid and converter-side inductors, so that optimum damping can be achieved by solely using converter current control, doing away with active damping, passive damping or complex state observer.
Abstract: This paper investigates the inherent damping characteristic of LCL- filters for three-phase grid-connected voltage source inverters. Specifically, it is found that when the converter-side current is used for implementing the feedback control, there will be an inherent damping term embedded in the control loop, which can neutralize the resonance introduced by LCL- filters. Theoretical analysis is then presented to suggest a general design guideline for choosing values of grid- and converter-side inductors, so that optimum damping can be naturally achieved by solely using converter current control, doing away with active damping, passive damping, or complex state observer. In cases where the design criterion is not fulfilled, the damping information contained in the converter current is extracted by a second-order notch filter, and then processed by a compensation gain to tune the system damping factor. The proposed compensation strategy requires no additional hardware and it will not cause an overmodulation problem due to its free of fundamental component. Both simulation and experimental results are finally provided to validate the theoretical findings developed in this paper.

384 citations

Journal ArticleDOI
Shu Wang1, Xinbo Ruan1, Kai Yao1, Siew-Chong Tan, Yang Yang1, Zhihong Ye 
16 Dec 2011
TL;DR: In this paper, a flick-free electrolytic capacitor-less single-phase ac-dc driver for LED lighting is proposed, which consists of an electrolytic capacitive-less PFC converter and a bidirectional converter, which serves to absorb the ac component of the pulsating current of the PFC converters.
Abstract: The electrolytic capacitor is the key component that limits the operating lifetime of LED drivers. If an ac-dc LED driver with power factor correction (PFC) control is allowed to output a pulsating current for driving the LEDs, the electrolytic capacitor will no longer be required. However, this pulsating current will introduce light flicker that varies at twice the power line frequency. In this paper, a configuration of flicker-free electrolytic capacitor-less single-phase ac-dc driver for LED lighting is proposed. The configuration comprises an electrolytic capacitor-less PFC converter and a bidirectional converter, which serves to absorb the ac component of the pulsating current of the PFC converter, leaving only a dc component to drive the LEDs. The output filter capacitor of the bidirectional converter is intentionally designed to have a large voltage ripple, thus its capacitance can be greatly reduced. Consequently, film capacitors can be used instead of electrolytic capacitors, leading to the realization of a flicker-free ac-dc LED driver that has a long lifetime. The proposed solution is generally applicable to all single-phase PFC converters. A prototype with 48-V, 0.7-A output is constructed and tested. Experimental results are presented to verify the effectiveness of the flick-free electrolytic capacitor-less ac-dc LED driver.

366 citations

Proceedings ArticleDOI
01 Nov 2011
TL;DR: In this article, power converter technologies are reviewed with focus on single/multi-cell power converter topologies and case studies on the Low Voltage Ride Through demand to power converter technology are presented including a discussion on reliability.
Abstract: The steady growth of installed wind power which reached 200 GW capacity in 2010, together with the up-scaling of the single wind turbine power capability - 7 MW's has been announced by manufacturers - has pushed the research and development of power converters towards full scale power conversion, lowered cost pr kW, and increased power density and the need for higher reliability. Substantial efforts are made to comply with the more stringent grid codes, especially grid faults ride-through and reactive power injection, which challenges power converter topologies, because the need for crowbar protection and/or power converter over-rating has been seen in the case of a doubly-fed induction generator. In this paper, power converter technologies are reviewed with focus on single/multi-cell power converter topologies. Further, case studies on the Low Voltage Ride Through demand to power converter technology are presented including a discussion on reliability. It is concluded that as the power level increases in wind turbines, medium voltage power converters will be a dominant power converter configuration.

341 citations

Proceedings ArticleDOI
06 Nov 2009
TL;DR: A comprehensive survey of the existing condition monitoring and protection methods in the following five areas: thermal protection and temperature estimation, stator insulation monitoring, bearing fault detection, broken rotor bar/end-ring detection, and air gap eccentricity detection is presented in this paper.
Abstract: Medium voltage induction motors are widely used in industry and are essential to industrial processes. The breakdown of these medium voltage motors not only leads to high repair expenses, but also causes extraordinary financial losses due to unexpected downtime. To provide reliable condition monitoring and protection for medium voltage motors, this paper presents a comprehensive survey of the existing condition monitoring and protection methods in the following five areas: thermal protection and temperature estimation, stator insulation monitoring and fault detection, bearing fault detection, broken rotor bar/end-ring detection, and air-gap eccentricity detection. For each category, the related features of medium voltage motors are discussed; the effectiveness of the existing methods are discussed in terms of their robustness, accuracy and implementation complexity; recommendations for the future research in these areas are also presented.

305 citations

Performance
Metrics
No. of papers from the Conference in previous years
YearPapers
2021247
20181
20171
20141
2013787
2011611