scispace - formally typeset
Search or ask a question
Conference

International Conference on Mobile Systems, Applications, and Services 

About: International Conference on Mobile Systems, Applications, and Services is an academic conference. The conference publishes majorly in the area(s): Mobile device & Android (operating system). Over the lifetime, 1114 publications have been published by the conference receiving 73887 citations.


Papers
More filters
Proceedings ArticleDOI
15 Jun 2010
TL;DR: MAUI supports fine-grained code offload to maximize energy savings with minimal burden on the programmer, and decides at run-time which methods should be remotely executed, driven by an optimization engine that achieves the best energy savings possible under the mobile device's current connectivity constrains.
Abstract: This paper presents MAUI, a system that enables fine-grained energy-aware offload of mobile code to the infrastructure. Previous approaches to these problems either relied heavily on programmer support to partition an application, or they were coarse-grained requiring full process (or full VM) migration. MAUI uses the benefits of a managed code environment to offer the best of both worlds: it supports fine-grained code offload to maximize energy savings with minimal burden on the programmer. MAUI decides at run-time which methods should be remotely executed, driven by an optimization engine that achieves the best energy savings possible under the mobile device's current connectivity constrains. In our evaluation, we show that MAUI enables: 1) a resource-intensive face recognition application that consumes an order of magnitude less energy, 2) a latency-sensitive arcade game application that doubles its refresh rate, and 3) a voice-based language translation application that bypasses the limitations of the smartphone environment by executing unsupported components remotely.

2,530 citations

Proceedings ArticleDOI
05 May 2003
TL;DR: A middleware architecture and algorithms that can be used by a centralized location broker service that adjusts the resolution of location information along spatial or temporal dimensions to meet specified anonymity constraints based on the entities who may be using location services within a given area.
Abstract: Advances in sensing and tracking technology enable location-based applications but they also create significant privacy risks. Anonymity can provide a high degree of privacy, save service users from dealing with service providers’ privacy policies, and reduce the service providers’ requirements for safeguarding private information. However, guaranteeing anonymous usage of location-based services requires that the precise location information transmitted by a user cannot be easily used to re-identify the subject. This paper presents a middleware architecture and algorithms that can be used by a centralized location broker service. The adaptive algorithms adjust the resolution of location information along spatial or temporal dimensions to meet specified anonymity constraints based on the entities who may be using location services within a given area. Using a model based on automotive traffic counts and cartographic material, we estimate the realistically expected spatial resolution for different anonymity constraints. The median resolution generated by our algorithms is 125 meters. Thus, anonymous location-based requests for urban areas would have the same accuracy currently needed for E-911 services; this would provide sufficient resolution for wayfinding, automated bus routing services and similar location-dependent services.

2,430 citations

Proceedings ArticleDOI
06 Jun 2005
TL;DR: The Horus system identifies different causes for the wireless channel variations and addresses them and uses location-clustering techniques to reduce the computational requirements of the algorithm and the lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.
Abstract: We present the design and implementation of the Horus WLAN location determination system. The design of the Horus system aims at satisfying two goals: high accuracy and low computational requirements. The Horus system identifies different causes for the wireless channel variations and addresses them to achieve its high accuracy. It uses location-clustering techniques to reduce the computational requirements of the algorithm. The lightweight Horus algorithm helps in supporting a larger number of users by running the algorithm at the clients.We discuss the different components of the Horus system and its implementation under two different operating systems and evaluate the performance of the Horus system on two testbeds. Our results show that the Horus system achieves its goal. It has an error of less than 0.6 meter on the average and its computational requirements are more than an order of magnitude better than other WLAN location determination systems. Moreover, the techniques developed in the context of the Horus system are general and can be applied to other WLAN location determination systems to enhance their accuracy. We also report lessons learned from experimenting with the Horus system and provide directions for future work.

1,631 citations

Proceedings ArticleDOI
17 Jun 2008
TL;DR: This paper describes a system and associated algorithms to monitor this important civil infrastructure using a collection of sensor-equipped vehicles, which they call the Pothole Patrol (P2), which uses the inherent mobility of the participating vehicles, opportunistically gathering data from vibration and GPS sensors, and processing the data to assess road surface conditions.
Abstract: This paper investigates an application of mobile sensing: detecting and reporting the surface conditions of roads. We describe a system and associated algorithms to monitor this important civil infrastructure using a collection of sensor-equipped vehicles. This system, which we call the Pothole Patrol (P2), uses the inherent mobility of the participating vehicles, opportunistically gathering data from vibration and GPS sensors, and processing the data to assess road surface conditions. We have deployed P2 on 7 taxis running in the Boston area. Using a simple machine-learning approach, we show that we are able to identify potholes and other severe road surface anomalies from accelerometer data. Via careful selection of training data and signal features, we have been able to build a detector that misidentifies good road segments as having potholes less than 0.2% of the time. We evaluate our system on data from thousands of kilometers of taxi drives, and show that it can successfully detect a number of real potholes in and around the Boston area. After clustering to further reduce spurious detections, manual inspection of reported potholes shows that over 90% contain road anomalies in need of repair.

1,126 citations

Proceedings ArticleDOI
25 Jun 2012
TL;DR: This paper develops the first empirically derived comprehensive power model of a commercial LTE network with less than 6% error rate and state transitions matching the specifications, and identifies that the performance bottleneck for web-based applications lies less in the network, compared to the previous study in 3G.
Abstract: With the recent advent of 4G LTE networks, there has been increasing interest to better understand the performance and power characteristics, compared with 3G/WiFi networks. In this paper, we take one of the first steps in this direction.Using a publicly deployed tool we designed for Android called 4GTest attracting more than 3000 users within 2 months and extensive local experiments, we study the network performance of LTE networks and compare with other types of mobile networks. We observe LTE generally has significantly higher downlink and uplink throughput than 3G and even WiFi, with a median value of 13Mbps and 6Mbps, respectively. We develop the first empirically derived comprehensive power model of a commercial LTE network with less than 6% error rate and state transitions matching the specifications. Using a comprehensive data set consisting of 5-month traces of 20 smartphone users, we carefully investigate the energy usage in 3G, LTE, and WiFi networks and evaluate the impact of configuring LTE-related parameters. Despite several new power saving improvements, we find that LTE is as much as 23 times less power efficient compared with WiFi, and even less power efficient than 3G, based on the user traces and the long high power tail is found to be a key contributor. In addition, we perform case studies of several popular applications on Android in LTE and identify that the performance bottleneck for web-based applications lies less in the network, compared to our previous study in 3G [24]. Instead, the device's processing power, despite the significant improvement compared to our analysis two years ago, becomes more of a bottleneck.

1,029 citations

Performance
Metrics
No. of papers from the Conference in previous years
YearPapers
202149
202044
2019155
201882
201781
2016157